include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,4,120}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,4,120}*1920a
if this polytope has a name.
Group : SmallGroup(1920,148887)
Rank : 4
Schlafli Type : {2,4,120}
Number of vertices, edges, etc : 2, 4, 240, 120
Order of s0s1s2s3 : 120
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,4,60}*960a, {2,2,120}*960
3-fold quotients : {2,4,40}*640a
4-fold quotients : {2,2,60}*480, {2,4,30}*480a
5-fold quotients : {2,4,24}*384a
6-fold quotients : {2,4,20}*320, {2,2,40}*320
8-fold quotients : {2,2,30}*240
10-fold quotients : {2,4,12}*192a, {2,2,24}*192
12-fold quotients : {2,2,20}*160, {2,4,10}*160
15-fold quotients : {2,4,8}*128a
16-fold quotients : {2,2,15}*120
20-fold quotients : {2,2,12}*96, {2,4,6}*96a
24-fold quotients : {2,2,10}*80
30-fold quotients : {2,4,4}*64, {2,2,8}*64
40-fold quotients : {2,2,6}*48
48-fold quotients : {2,2,5}*40
60-fold quotients : {2,2,4}*32, {2,4,2}*32
80-fold quotients : {2,2,3}*24
120-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (123,153)(124,154)(125,155)(126,156)(127,157)(128,158)(129,159)(130,160)
(131,161)(132,162)(133,163)(134,164)(135,165)(136,166)(137,167)(138,168)
(139,169)(140,170)(141,171)(142,172)(143,173)(144,174)(145,175)(146,176)
(147,177)(148,178)(149,179)(150,180)(151,181)(152,182)(183,213)(184,214)
(185,215)(186,216)(187,217)(188,218)(189,219)(190,220)(191,221)(192,222)
(193,223)(194,224)(195,225)(196,226)(197,227)(198,228)(199,229)(200,230)
(201,231)(202,232)(203,233)(204,234)(205,235)(206,236)(207,237)(208,238)
(209,239)(210,240)(211,241)(212,242);;
s2 := ( 3,123)( 4,127)( 5,126)( 6,125)( 7,124)( 8,133)( 9,137)( 10,136)
( 11,135)( 12,134)( 13,128)( 14,132)( 15,131)( 16,130)( 17,129)( 18,138)
( 19,142)( 20,141)( 21,140)( 22,139)( 23,148)( 24,152)( 25,151)( 26,150)
( 27,149)( 28,143)( 29,147)( 30,146)( 31,145)( 32,144)( 33,153)( 34,157)
( 35,156)( 36,155)( 37,154)( 38,163)( 39,167)( 40,166)( 41,165)( 42,164)
( 43,158)( 44,162)( 45,161)( 46,160)( 47,159)( 48,168)( 49,172)( 50,171)
( 51,170)( 52,169)( 53,178)( 54,182)( 55,181)( 56,180)( 57,179)( 58,173)
( 59,177)( 60,176)( 61,175)( 62,174)( 63,198)( 64,202)( 65,201)( 66,200)
( 67,199)( 68,208)( 69,212)( 70,211)( 71,210)( 72,209)( 73,203)( 74,207)
( 75,206)( 76,205)( 77,204)( 78,183)( 79,187)( 80,186)( 81,185)( 82,184)
( 83,193)( 84,197)( 85,196)( 86,195)( 87,194)( 88,188)( 89,192)( 90,191)
( 91,190)( 92,189)( 93,228)( 94,232)( 95,231)( 96,230)( 97,229)( 98,238)
( 99,242)(100,241)(101,240)(102,239)(103,233)(104,237)(105,236)(106,235)
(107,234)(108,213)(109,217)(110,216)(111,215)(112,214)(113,223)(114,227)
(115,226)(116,225)(117,224)(118,218)(119,222)(120,221)(121,220)(122,219);;
s3 := ( 3, 9)( 4, 8)( 5, 12)( 6, 11)( 7, 10)( 13, 14)( 15, 17)( 18, 24)
( 19, 23)( 20, 27)( 21, 26)( 22, 25)( 28, 29)( 30, 32)( 33, 39)( 34, 38)
( 35, 42)( 36, 41)( 37, 40)( 43, 44)( 45, 47)( 48, 54)( 49, 53)( 50, 57)
( 51, 56)( 52, 55)( 58, 59)( 60, 62)( 63, 84)( 64, 83)( 65, 87)( 66, 86)
( 67, 85)( 68, 79)( 69, 78)( 70, 82)( 71, 81)( 72, 80)( 73, 89)( 74, 88)
( 75, 92)( 76, 91)( 77, 90)( 93,114)( 94,113)( 95,117)( 96,116)( 97,115)
( 98,109)( 99,108)(100,112)(101,111)(102,110)(103,119)(104,118)(105,122)
(106,121)(107,120)(123,189)(124,188)(125,192)(126,191)(127,190)(128,184)
(129,183)(130,187)(131,186)(132,185)(133,194)(134,193)(135,197)(136,196)
(137,195)(138,204)(139,203)(140,207)(141,206)(142,205)(143,199)(144,198)
(145,202)(146,201)(147,200)(148,209)(149,208)(150,212)(151,211)(152,210)
(153,219)(154,218)(155,222)(156,221)(157,220)(158,214)(159,213)(160,217)
(161,216)(162,215)(163,224)(164,223)(165,227)(166,226)(167,225)(168,234)
(169,233)(170,237)(171,236)(172,235)(173,229)(174,228)(175,232)(176,231)
(177,230)(178,239)(179,238)(180,242)(181,241)(182,240);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s1*s2*s1*s2*s1*s2*s1*s2, s1*s2*s3*s2*s1*s2*s3*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(242)!(1,2);
s1 := Sym(242)!(123,153)(124,154)(125,155)(126,156)(127,157)(128,158)(129,159)
(130,160)(131,161)(132,162)(133,163)(134,164)(135,165)(136,166)(137,167)
(138,168)(139,169)(140,170)(141,171)(142,172)(143,173)(144,174)(145,175)
(146,176)(147,177)(148,178)(149,179)(150,180)(151,181)(152,182)(183,213)
(184,214)(185,215)(186,216)(187,217)(188,218)(189,219)(190,220)(191,221)
(192,222)(193,223)(194,224)(195,225)(196,226)(197,227)(198,228)(199,229)
(200,230)(201,231)(202,232)(203,233)(204,234)(205,235)(206,236)(207,237)
(208,238)(209,239)(210,240)(211,241)(212,242);
s2 := Sym(242)!( 3,123)( 4,127)( 5,126)( 6,125)( 7,124)( 8,133)( 9,137)
( 10,136)( 11,135)( 12,134)( 13,128)( 14,132)( 15,131)( 16,130)( 17,129)
( 18,138)( 19,142)( 20,141)( 21,140)( 22,139)( 23,148)( 24,152)( 25,151)
( 26,150)( 27,149)( 28,143)( 29,147)( 30,146)( 31,145)( 32,144)( 33,153)
( 34,157)( 35,156)( 36,155)( 37,154)( 38,163)( 39,167)( 40,166)( 41,165)
( 42,164)( 43,158)( 44,162)( 45,161)( 46,160)( 47,159)( 48,168)( 49,172)
( 50,171)( 51,170)( 52,169)( 53,178)( 54,182)( 55,181)( 56,180)( 57,179)
( 58,173)( 59,177)( 60,176)( 61,175)( 62,174)( 63,198)( 64,202)( 65,201)
( 66,200)( 67,199)( 68,208)( 69,212)( 70,211)( 71,210)( 72,209)( 73,203)
( 74,207)( 75,206)( 76,205)( 77,204)( 78,183)( 79,187)( 80,186)( 81,185)
( 82,184)( 83,193)( 84,197)( 85,196)( 86,195)( 87,194)( 88,188)( 89,192)
( 90,191)( 91,190)( 92,189)( 93,228)( 94,232)( 95,231)( 96,230)( 97,229)
( 98,238)( 99,242)(100,241)(101,240)(102,239)(103,233)(104,237)(105,236)
(106,235)(107,234)(108,213)(109,217)(110,216)(111,215)(112,214)(113,223)
(114,227)(115,226)(116,225)(117,224)(118,218)(119,222)(120,221)(121,220)
(122,219);
s3 := Sym(242)!( 3, 9)( 4, 8)( 5, 12)( 6, 11)( 7, 10)( 13, 14)( 15, 17)
( 18, 24)( 19, 23)( 20, 27)( 21, 26)( 22, 25)( 28, 29)( 30, 32)( 33, 39)
( 34, 38)( 35, 42)( 36, 41)( 37, 40)( 43, 44)( 45, 47)( 48, 54)( 49, 53)
( 50, 57)( 51, 56)( 52, 55)( 58, 59)( 60, 62)( 63, 84)( 64, 83)( 65, 87)
( 66, 86)( 67, 85)( 68, 79)( 69, 78)( 70, 82)( 71, 81)( 72, 80)( 73, 89)
( 74, 88)( 75, 92)( 76, 91)( 77, 90)( 93,114)( 94,113)( 95,117)( 96,116)
( 97,115)( 98,109)( 99,108)(100,112)(101,111)(102,110)(103,119)(104,118)
(105,122)(106,121)(107,120)(123,189)(124,188)(125,192)(126,191)(127,190)
(128,184)(129,183)(130,187)(131,186)(132,185)(133,194)(134,193)(135,197)
(136,196)(137,195)(138,204)(139,203)(140,207)(141,206)(142,205)(143,199)
(144,198)(145,202)(146,201)(147,200)(148,209)(149,208)(150,212)(151,211)
(152,210)(153,219)(154,218)(155,222)(156,221)(157,220)(158,214)(159,213)
(160,217)(161,216)(162,215)(163,224)(164,223)(165,227)(166,226)(167,225)
(168,234)(169,233)(170,237)(171,236)(172,235)(173,229)(174,228)(175,232)
(176,231)(177,230)(178,239)(179,238)(180,242)(181,241)(182,240);
poly := sub<Sym(242)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope