Polytope of Type {5,2,24,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {5,2,24,4}*1920a
if this polytope has a name.
Group : SmallGroup(1920,148900)
Rank : 5
Schlafli Type : {5,2,24,4}
Number of vertices, edges, etc : 5, 5, 24, 48, 4
Order of s0s1s2s3s4 : 120
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {5,2,12,4}*960a, {5,2,24,2}*960
   3-fold quotients : {5,2,8,4}*640a
   4-fold quotients : {5,2,12,2}*480, {5,2,6,4}*480a
   6-fold quotients : {5,2,4,4}*320, {5,2,8,2}*320
   8-fold quotients : {5,2,6,2}*240
   12-fold quotients : {5,2,2,4}*160, {5,2,4,2}*160
   16-fold quotients : {5,2,3,2}*120
   24-fold quotients : {5,2,2,2}*80
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3)(4,5);;
s1 := (1,2)(3,4);;
s2 := (  7,  8)( 10, 11)( 13, 14)( 16, 17)( 18, 21)( 19, 23)( 20, 22)( 24, 27)
( 25, 29)( 26, 28)( 30, 42)( 31, 44)( 32, 43)( 33, 45)( 34, 47)( 35, 46)
( 36, 48)( 37, 50)( 38, 49)( 39, 51)( 40, 53)( 41, 52)( 55, 56)( 58, 59)
( 61, 62)( 64, 65)( 66, 69)( 67, 71)( 68, 70)( 72, 75)( 73, 77)( 74, 76)
( 78, 90)( 79, 92)( 80, 91)( 81, 93)( 82, 95)( 83, 94)( 84, 96)( 85, 98)
( 86, 97)( 87, 99)( 88,101)( 89,100);;
s3 := (  6, 31)(  7, 30)(  8, 32)(  9, 34)( 10, 33)( 11, 35)( 12, 37)( 13, 36)
( 14, 38)( 15, 40)( 16, 39)( 17, 41)( 18, 46)( 19, 45)( 20, 47)( 21, 43)
( 22, 42)( 23, 44)( 24, 52)( 25, 51)( 26, 53)( 27, 49)( 28, 48)( 29, 50)
( 54, 79)( 55, 78)( 56, 80)( 57, 82)( 58, 81)( 59, 83)( 60, 85)( 61, 84)
( 62, 86)( 63, 88)( 64, 87)( 65, 89)( 66, 94)( 67, 93)( 68, 95)( 69, 91)
( 70, 90)( 71, 92)( 72,100)( 73, 99)( 74,101)( 75, 97)( 76, 96)( 77, 98);;
s4 := (  6, 54)(  7, 55)(  8, 56)(  9, 57)( 10, 58)( 11, 59)( 12, 60)( 13, 61)
( 14, 62)( 15, 63)( 16, 64)( 17, 65)( 18, 66)( 19, 67)( 20, 68)( 21, 69)
( 22, 70)( 23, 71)( 24, 72)( 25, 73)( 26, 74)( 27, 75)( 28, 76)( 29, 77)
( 30, 84)( 31, 85)( 32, 86)( 33, 87)( 34, 88)( 35, 89)( 36, 78)( 37, 79)
( 38, 80)( 39, 81)( 40, 82)( 41, 83)( 42, 96)( 43, 97)( 44, 98)( 45, 99)
( 46,100)( 47,101)( 48, 90)( 49, 91)( 50, 92)( 51, 93)( 52, 94)( 53, 95);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s2*s3*s4*s3*s2*s3*s4*s3, s3*s4*s3*s4*s3*s4*s3*s4, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(101)!(2,3)(4,5);
s1 := Sym(101)!(1,2)(3,4);
s2 := Sym(101)!(  7,  8)( 10, 11)( 13, 14)( 16, 17)( 18, 21)( 19, 23)( 20, 22)
( 24, 27)( 25, 29)( 26, 28)( 30, 42)( 31, 44)( 32, 43)( 33, 45)( 34, 47)
( 35, 46)( 36, 48)( 37, 50)( 38, 49)( 39, 51)( 40, 53)( 41, 52)( 55, 56)
( 58, 59)( 61, 62)( 64, 65)( 66, 69)( 67, 71)( 68, 70)( 72, 75)( 73, 77)
( 74, 76)( 78, 90)( 79, 92)( 80, 91)( 81, 93)( 82, 95)( 83, 94)( 84, 96)
( 85, 98)( 86, 97)( 87, 99)( 88,101)( 89,100);
s3 := Sym(101)!(  6, 31)(  7, 30)(  8, 32)(  9, 34)( 10, 33)( 11, 35)( 12, 37)
( 13, 36)( 14, 38)( 15, 40)( 16, 39)( 17, 41)( 18, 46)( 19, 45)( 20, 47)
( 21, 43)( 22, 42)( 23, 44)( 24, 52)( 25, 51)( 26, 53)( 27, 49)( 28, 48)
( 29, 50)( 54, 79)( 55, 78)( 56, 80)( 57, 82)( 58, 81)( 59, 83)( 60, 85)
( 61, 84)( 62, 86)( 63, 88)( 64, 87)( 65, 89)( 66, 94)( 67, 93)( 68, 95)
( 69, 91)( 70, 90)( 71, 92)( 72,100)( 73, 99)( 74,101)( 75, 97)( 76, 96)
( 77, 98);
s4 := Sym(101)!(  6, 54)(  7, 55)(  8, 56)(  9, 57)( 10, 58)( 11, 59)( 12, 60)
( 13, 61)( 14, 62)( 15, 63)( 16, 64)( 17, 65)( 18, 66)( 19, 67)( 20, 68)
( 21, 69)( 22, 70)( 23, 71)( 24, 72)( 25, 73)( 26, 74)( 27, 75)( 28, 76)
( 29, 77)( 30, 84)( 31, 85)( 32, 86)( 33, 87)( 34, 88)( 35, 89)( 36, 78)
( 37, 79)( 38, 80)( 39, 81)( 40, 82)( 41, 83)( 42, 96)( 43, 97)( 44, 98)
( 45, 99)( 46,100)( 47,101)( 48, 90)( 49, 91)( 50, 92)( 51, 93)( 52, 94)
( 53, 95);
poly := sub<Sym(101)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s2*s3*s4*s3*s2*s3*s4*s3, 
s3*s4*s3*s4*s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope