include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {5,2,12,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {5,2,12,4}*960a
if this polytope has a name.
Group : SmallGroup(960,7400)
Rank : 5
Schlafli Type : {5,2,12,4}
Number of vertices, edges, etc : 5, 5, 12, 24, 4
Order of s0s1s2s3s4 : 60
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{5,2,12,4,2} of size 1920
Vertex Figure Of :
{2,5,2,12,4} of size 1920
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {5,2,12,2}*480, {5,2,6,4}*480a
3-fold quotients : {5,2,4,4}*320
4-fold quotients : {5,2,6,2}*240
6-fold quotients : {5,2,2,4}*160, {5,2,4,2}*160
8-fold quotients : {5,2,3,2}*120
12-fold quotients : {5,2,2,2}*80
Covers (Minimal Covers in Boldface) :
2-fold covers : {5,2,12,8}*1920a, {5,2,24,4}*1920a, {5,2,12,8}*1920b, {5,2,24,4}*1920b, {5,2,12,4}*1920a, {10,2,12,4}*1920a
Permutation Representation (GAP) :
s0 := (2,3)(4,5);;
s1 := (1,2)(3,4);;
s2 := ( 7, 8)( 9,10)(11,15)(13,17)(14,16)(20,25)(21,24)(22,23)(26,27)(28,29);;
s3 := ( 6,13)( 7, 9)( 8,22)(10,14)(11,28)(12,16)(15,26)(17,23)(18,24)(19,20)
(21,29)(25,27);;
s4 := ( 7,11)( 8,15)(13,20)(14,21)(16,24)(17,25);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s2*s3*s4*s3*s2*s3*s4*s3, s3*s4*s3*s4*s3*s4*s3*s4,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(29)!(2,3)(4,5);
s1 := Sym(29)!(1,2)(3,4);
s2 := Sym(29)!( 7, 8)( 9,10)(11,15)(13,17)(14,16)(20,25)(21,24)(22,23)(26,27)
(28,29);
s3 := Sym(29)!( 6,13)( 7, 9)( 8,22)(10,14)(11,28)(12,16)(15,26)(17,23)(18,24)
(19,20)(21,29)(25,27);
s4 := Sym(29)!( 7,11)( 8,15)(13,20)(14,21)(16,24)(17,25);
poly := sub<Sym(29)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s2*s3*s4*s3*s2*s3*s4*s3,
s3*s4*s3*s4*s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope