Polytope of Type {2,4,60,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,4,60,2}*1920a
if this polytope has a name.
Group : SmallGroup(1920,205027)
Rank : 5
Schlafli Type : {2,4,60,2}
Number of vertices, edges, etc : 2, 4, 120, 60, 2
Order of s0s1s2s3s4 : 60
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,2,60,2}*960, {2,4,30,2}*960a
   3-fold quotients : {2,4,20,2}*640
   4-fold quotients : {2,2,30,2}*480
   5-fold quotients : {2,4,12,2}*384a
   6-fold quotients : {2,2,20,2}*320, {2,4,10,2}*320
   8-fold quotients : {2,2,15,2}*240
   10-fold quotients : {2,2,12,2}*192, {2,4,6,2}*192a
   12-fold quotients : {2,2,10,2}*160
   15-fold quotients : {2,4,4,2}*128
   20-fold quotients : {2,2,6,2}*96
   24-fold quotients : {2,2,5,2}*80
   30-fold quotients : {2,2,4,2}*64, {2,4,2,2}*64
   40-fold quotients : {2,2,3,2}*48
   60-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 63, 78)( 64, 79)( 65, 80)( 66, 81)( 67, 82)( 68, 83)( 69, 84)( 70, 85)
( 71, 86)( 72, 87)( 73, 88)( 74, 89)( 75, 90)( 76, 91)( 77, 92)( 93,108)
( 94,109)( 95,110)( 96,111)( 97,112)( 98,113)( 99,114)(100,115)(101,116)
(102,117)(103,118)(104,119)(105,120)(106,121)(107,122);;
s2 := (  3, 63)(  4, 67)(  5, 66)(  6, 65)(  7, 64)(  8, 73)(  9, 77)( 10, 76)
( 11, 75)( 12, 74)( 13, 68)( 14, 72)( 15, 71)( 16, 70)( 17, 69)( 18, 78)
( 19, 82)( 20, 81)( 21, 80)( 22, 79)( 23, 88)( 24, 92)( 25, 91)( 26, 90)
( 27, 89)( 28, 83)( 29, 87)( 30, 86)( 31, 85)( 32, 84)( 33, 93)( 34, 97)
( 35, 96)( 36, 95)( 37, 94)( 38,103)( 39,107)( 40,106)( 41,105)( 42,104)
( 43, 98)( 44,102)( 45,101)( 46,100)( 47, 99)( 48,108)( 49,112)( 50,111)
( 51,110)( 52,109)( 53,118)( 54,122)( 55,121)( 56,120)( 57,119)( 58,113)
( 59,117)( 60,116)( 61,115)( 62,114);;
s3 := (  3,  9)(  4,  8)(  5, 12)(  6, 11)(  7, 10)( 13, 14)( 15, 17)( 18, 24)
( 19, 23)( 20, 27)( 21, 26)( 22, 25)( 28, 29)( 30, 32)( 33, 39)( 34, 38)
( 35, 42)( 36, 41)( 37, 40)( 43, 44)( 45, 47)( 48, 54)( 49, 53)( 50, 57)
( 51, 56)( 52, 55)( 58, 59)( 60, 62)( 63, 99)( 64, 98)( 65,102)( 66,101)
( 67,100)( 68, 94)( 69, 93)( 70, 97)( 71, 96)( 72, 95)( 73,104)( 74,103)
( 75,107)( 76,106)( 77,105)( 78,114)( 79,113)( 80,117)( 81,116)( 82,115)
( 83,109)( 84,108)( 85,112)( 86,111)( 87,110)( 88,119)( 89,118)( 90,122)
( 91,121)( 92,120);;
s4 := (123,124);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4, s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(124)!(1,2);
s1 := Sym(124)!( 63, 78)( 64, 79)( 65, 80)( 66, 81)( 67, 82)( 68, 83)( 69, 84)
( 70, 85)( 71, 86)( 72, 87)( 73, 88)( 74, 89)( 75, 90)( 76, 91)( 77, 92)
( 93,108)( 94,109)( 95,110)( 96,111)( 97,112)( 98,113)( 99,114)(100,115)
(101,116)(102,117)(103,118)(104,119)(105,120)(106,121)(107,122);
s2 := Sym(124)!(  3, 63)(  4, 67)(  5, 66)(  6, 65)(  7, 64)(  8, 73)(  9, 77)
( 10, 76)( 11, 75)( 12, 74)( 13, 68)( 14, 72)( 15, 71)( 16, 70)( 17, 69)
( 18, 78)( 19, 82)( 20, 81)( 21, 80)( 22, 79)( 23, 88)( 24, 92)( 25, 91)
( 26, 90)( 27, 89)( 28, 83)( 29, 87)( 30, 86)( 31, 85)( 32, 84)( 33, 93)
( 34, 97)( 35, 96)( 36, 95)( 37, 94)( 38,103)( 39,107)( 40,106)( 41,105)
( 42,104)( 43, 98)( 44,102)( 45,101)( 46,100)( 47, 99)( 48,108)( 49,112)
( 50,111)( 51,110)( 52,109)( 53,118)( 54,122)( 55,121)( 56,120)( 57,119)
( 58,113)( 59,117)( 60,116)( 61,115)( 62,114);
s3 := Sym(124)!(  3,  9)(  4,  8)(  5, 12)(  6, 11)(  7, 10)( 13, 14)( 15, 17)
( 18, 24)( 19, 23)( 20, 27)( 21, 26)( 22, 25)( 28, 29)( 30, 32)( 33, 39)
( 34, 38)( 35, 42)( 36, 41)( 37, 40)( 43, 44)( 45, 47)( 48, 54)( 49, 53)
( 50, 57)( 51, 56)( 52, 55)( 58, 59)( 60, 62)( 63, 99)( 64, 98)( 65,102)
( 66,101)( 67,100)( 68, 94)( 69, 93)( 70, 97)( 71, 96)( 72, 95)( 73,104)
( 74,103)( 75,107)( 76,106)( 77,105)( 78,114)( 79,113)( 80,117)( 81,116)
( 82,115)( 83,109)( 84,108)( 85,112)( 86,111)( 87,110)( 88,119)( 89,118)
( 90,122)( 91,121)( 92,120);
s4 := Sym(124)!(123,124);
poly := sub<Sym(124)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s1*s2*s1*s2*s1*s2*s1*s2, s1*s2*s3*s2*s1*s2*s3*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope