include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,4,10,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,4,10,2}*320
if this polytope has a name.
Group : SmallGroup(320,1612)
Rank : 5
Schlafli Type : {2,4,10,2}
Number of vertices, edges, etc : 2, 4, 20, 10, 2
Order of s0s1s2s3s4 : 20
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,4,10,2,2} of size 640
{2,4,10,2,3} of size 960
{2,4,10,2,4} of size 1280
{2,4,10,2,5} of size 1600
{2,4,10,2,6} of size 1920
Vertex Figure Of :
{2,2,4,10,2} of size 640
{3,2,4,10,2} of size 960
{4,2,4,10,2} of size 1280
{5,2,4,10,2} of size 1600
{6,2,4,10,2} of size 1920
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,2,10,2}*160
4-fold quotients : {2,2,5,2}*80
5-fold quotients : {2,4,2,2}*64
10-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
2-fold covers : {2,4,20,2}*640, {4,4,10,2}*640, {2,4,10,4}*640, {2,8,10,2}*640
3-fold covers : {2,12,10,2}*960, {2,4,10,6}*960, {6,4,10,2}*960, {2,4,30,2}*960a
4-fold covers : {4,4,20,2}*1280, {2,4,20,4}*1280, {4,4,10,4}*1280, {4,8,10,2}*1280a, {8,4,10,2}*1280a, {2,8,20,2}*1280a, {2,4,40,2}*1280a, {4,8,10,2}*1280b, {8,4,10,2}*1280b, {2,8,20,2}*1280b, {2,4,40,2}*1280b, {4,4,10,2}*1280, {2,4,20,2}*1280, {2,4,10,8}*1280, {2,8,10,4}*1280, {2,16,10,2}*1280
5-fold covers : {2,4,50,2}*1600, {2,20,10,2}*1600a, {2,4,10,10}*1600a, {2,4,10,10}*1600b, {10,4,10,2}*1600, {2,20,10,2}*1600c
6-fold covers : {4,4,30,2}*1920, {2,4,60,2}*1920a, {4,4,10,6}*1920, {4,12,10,2}*1920a, {12,4,10,2}*1920, {2,4,20,6}*1920, {6,4,20,2}*1920, {2,12,20,2}*1920, {2,4,30,4}*1920a, {6,4,10,4}*1920, {2,4,10,12}*1920, {2,12,10,4}*1920, {2,8,30,2}*1920, {2,8,10,6}*1920, {6,8,10,2}*1920, {2,24,10,2}*1920
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 7)( 8,13)( 9,14)(15,19)(16,20);;
s2 := ( 3, 4)( 5, 9)( 6, 8)( 7,12)(10,16)(11,15)(13,18)(14,17)(19,22)(20,21);;
s3 := ( 3, 5)( 4, 8)( 6,10)( 7,13)( 9,15)(12,17)(14,19)(18,21);;
s4 := (23,24);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4, s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(24)!(1,2);
s1 := Sym(24)!( 4, 7)( 8,13)( 9,14)(15,19)(16,20);
s2 := Sym(24)!( 3, 4)( 5, 9)( 6, 8)( 7,12)(10,16)(11,15)(13,18)(14,17)(19,22)
(20,21);
s3 := Sym(24)!( 3, 5)( 4, 8)( 6,10)( 7,13)( 9,15)(12,17)(14,19)(18,21);
s4 := Sym(24)!(23,24);
poly := sub<Sym(24)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s1*s2*s1*s2*s1*s2*s1*s2, s1*s2*s3*s2*s1*s2*s3*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope