Polytope of Type {2,12,4,2,5}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,12,4,2,5}*1920a
if this polytope has a name.
Group : SmallGroup(1920,205032)
Rank : 6
Schlafli Type : {2,12,4,2,5}
Number of vertices, edges, etc : 2, 12, 24, 4, 5, 5
Order of s0s1s2s3s4s5 : 60
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,12,2,2,5}*960, {2,6,4,2,5}*960a
   3-fold quotients : {2,4,4,2,5}*640
   4-fold quotients : {2,6,2,2,5}*480
   6-fold quotients : {2,2,4,2,5}*320, {2,4,2,2,5}*320
   8-fold quotients : {2,3,2,2,5}*240
   12-fold quotients : {2,2,2,2,5}*160
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 5)( 6, 7)( 8,12)(10,14)(11,13)(17,22)(18,21)(19,20)(23,24)(25,26);;
s2 := ( 3,10)( 4, 6)( 5,19)( 7,11)( 8,25)( 9,13)(12,23)(14,20)(15,21)(16,17)
(18,26)(22,24);;
s3 := ( 4, 8)( 5,12)(10,17)(11,18)(13,21)(14,22);;
s4 := (28,29)(30,31);;
s5 := (27,28)(29,30);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  s5 := F.6;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5, 
s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s3*s4*s3*s4, s0*s5*s0*s5, 
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5, 
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3, 
s4*s5*s4*s5*s4*s5*s4*s5*s4*s5, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(31)!(1,2);
s1 := Sym(31)!( 4, 5)( 6, 7)( 8,12)(10,14)(11,13)(17,22)(18,21)(19,20)(23,24)
(25,26);
s2 := Sym(31)!( 3,10)( 4, 6)( 5,19)( 7,11)( 8,25)( 9,13)(12,23)(14,20)(15,21)
(16,17)(18,26)(22,24);
s3 := Sym(31)!( 4, 8)( 5,12)(10,17)(11,18)(13,21)(14,22);
s4 := Sym(31)!(28,29)(30,31);
s5 := Sym(31)!(27,28)(29,30);
poly := sub<Sym(31)|s0,s1,s2,s3,s4,s5>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5, 
s3*s5*s3*s5, s1*s2*s3*s2*s1*s2*s3*s2, 
s2*s3*s2*s3*s2*s3*s2*s3, s4*s5*s4*s5*s4*s5*s4*s5*s4*s5, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope