Polytope of Type {2,6,2,2,5}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,6,2,2,5}*480
if this polytope has a name.
Group : SmallGroup(480,1207)
Rank : 6
Schlafli Type : {2,6,2,2,5}
Number of vertices, edges, etc : 2, 6, 6, 2, 5, 5
Order of s0s1s2s3s4s5 : 30
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {2,6,2,2,5,2} of size 960
Vertex Figure Of :
   {2,2,6,2,2,5} of size 960
   {3,2,6,2,2,5} of size 1440
   {4,2,6,2,2,5} of size 1920
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,3,2,2,5}*240
   3-fold quotients : {2,2,2,2,5}*160
Covers (Minimal Covers in Boldface) :
   2-fold covers : {2,12,2,2,5}*960, {2,6,4,2,5}*960a, {4,6,2,2,5}*960a, {2,6,2,2,10}*960
   3-fold covers : {2,18,2,2,5}*1440, {2,6,6,2,5}*1440a, {2,6,6,2,5}*1440c, {6,6,2,2,5}*1440a, {6,6,2,2,5}*1440b, {2,6,2,2,15}*1440
   4-fold covers : {2,12,4,2,5}*1920a, {4,12,2,2,5}*1920a, {4,6,4,2,5}*1920a, {2,6,8,2,5}*1920, {8,6,2,2,5}*1920, {2,24,2,2,5}*1920, {2,6,2,4,10}*1920, {2,6,4,2,10}*1920a, {4,6,2,2,10}*1920a, {2,12,2,2,10}*1920, {2,6,2,2,20}*1920, {2,6,4,2,5}*1920, {4,6,2,2,5}*1920
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (5,6)(7,8);;
s2 := (3,7)(4,5)(6,8);;
s3 := ( 9,10);;
s4 := (12,13)(14,15);;
s5 := (11,12)(13,14);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  s5 := F.6;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5, 
s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5, 
s3*s5*s3*s5, s4*s5*s4*s5*s4*s5*s4*s5*s4*s5, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(15)!(1,2);
s1 := Sym(15)!(5,6)(7,8);
s2 := Sym(15)!(3,7)(4,5)(6,8);
s3 := Sym(15)!( 9,10);
s4 := Sym(15)!(12,13)(14,15);
s5 := Sym(15)!(11,12)(13,14);
poly := sub<Sym(15)|s0,s1,s2,s3,s4,s5>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4, s0*s5*s0*s5, s1*s5*s1*s5, 
s2*s5*s2*s5, s3*s5*s3*s5, s4*s5*s4*s5*s4*s5*s4*s5*s4*s5, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope