include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,20,6,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,20,6,2}*1920
if this polytope has a name.
Group : SmallGroup(1920,205034)
Rank : 5
Schlafli Type : {4,20,6,2}
Number of vertices, edges, etc : 4, 40, 60, 6, 2
Order of s0s1s2s3s4 : 60
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,20,6,2}*960a, {4,10,6,2}*960
3-fold quotients : {4,20,2,2}*640
4-fold quotients : {2,10,6,2}*480
5-fold quotients : {4,4,6,2}*384
6-fold quotients : {2,20,2,2}*320, {4,10,2,2}*320
10-fold quotients : {2,4,6,2}*192a, {4,2,6,2}*192
12-fold quotients : {2,10,2,2}*160
15-fold quotients : {4,4,2,2}*128
20-fold quotients : {4,2,3,2}*96, {2,2,6,2}*96
24-fold quotients : {2,5,2,2}*80
30-fold quotients : {2,4,2,2}*64, {4,2,2,2}*64
40-fold quotients : {2,2,3,2}*48
60-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 61, 76)( 62, 77)( 63, 78)( 64, 79)( 65, 80)( 66, 81)( 67, 82)( 68, 83)
( 69, 84)( 70, 85)( 71, 86)( 72, 87)( 73, 88)( 74, 89)( 75, 90)( 91,106)
( 92,107)( 93,108)( 94,109)( 95,110)( 96,111)( 97,112)( 98,113)( 99,114)
(100,115)(101,116)(102,117)(103,118)(104,119)(105,120);;
s1 := ( 1, 61)( 2, 65)( 3, 64)( 4, 63)( 5, 62)( 6, 66)( 7, 70)( 8, 69)
( 9, 68)( 10, 67)( 11, 71)( 12, 75)( 13, 74)( 14, 73)( 15, 72)( 16, 76)
( 17, 80)( 18, 79)( 19, 78)( 20, 77)( 21, 81)( 22, 85)( 23, 84)( 24, 83)
( 25, 82)( 26, 86)( 27, 90)( 28, 89)( 29, 88)( 30, 87)( 31, 91)( 32, 95)
( 33, 94)( 34, 93)( 35, 92)( 36, 96)( 37,100)( 38, 99)( 39, 98)( 40, 97)
( 41,101)( 42,105)( 43,104)( 44,103)( 45,102)( 46,106)( 47,110)( 48,109)
( 49,108)( 50,107)( 51,111)( 52,115)( 53,114)( 54,113)( 55,112)( 56,116)
( 57,120)( 58,119)( 59,118)( 60,117);;
s2 := ( 1, 2)( 3, 5)( 6, 12)( 7, 11)( 8, 15)( 9, 14)( 10, 13)( 16, 17)
( 18, 20)( 21, 27)( 22, 26)( 23, 30)( 24, 29)( 25, 28)( 31, 32)( 33, 35)
( 36, 42)( 37, 41)( 38, 45)( 39, 44)( 40, 43)( 46, 47)( 48, 50)( 51, 57)
( 52, 56)( 53, 60)( 54, 59)( 55, 58)( 61, 92)( 62, 91)( 63, 95)( 64, 94)
( 65, 93)( 66,102)( 67,101)( 68,105)( 69,104)( 70,103)( 71, 97)( 72, 96)
( 73,100)( 74, 99)( 75, 98)( 76,107)( 77,106)( 78,110)( 79,109)( 80,108)
( 81,117)( 82,116)( 83,120)( 84,119)( 85,118)( 86,112)( 87,111)( 88,115)
( 89,114)( 90,113);;
s3 := ( 1, 6)( 2, 7)( 3, 8)( 4, 9)( 5, 10)( 16, 21)( 17, 22)( 18, 23)
( 19, 24)( 20, 25)( 31, 36)( 32, 37)( 33, 38)( 34, 39)( 35, 40)( 46, 51)
( 47, 52)( 48, 53)( 49, 54)( 50, 55)( 61, 66)( 62, 67)( 63, 68)( 64, 69)
( 65, 70)( 76, 81)( 77, 82)( 78, 83)( 79, 84)( 80, 85)( 91, 96)( 92, 97)
( 93, 98)( 94, 99)( 95,100)(106,111)(107,112)(108,113)(109,114)(110,115);;
s4 := (121,122);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(122)!( 61, 76)( 62, 77)( 63, 78)( 64, 79)( 65, 80)( 66, 81)( 67, 82)
( 68, 83)( 69, 84)( 70, 85)( 71, 86)( 72, 87)( 73, 88)( 74, 89)( 75, 90)
( 91,106)( 92,107)( 93,108)( 94,109)( 95,110)( 96,111)( 97,112)( 98,113)
( 99,114)(100,115)(101,116)(102,117)(103,118)(104,119)(105,120);
s1 := Sym(122)!( 1, 61)( 2, 65)( 3, 64)( 4, 63)( 5, 62)( 6, 66)( 7, 70)
( 8, 69)( 9, 68)( 10, 67)( 11, 71)( 12, 75)( 13, 74)( 14, 73)( 15, 72)
( 16, 76)( 17, 80)( 18, 79)( 19, 78)( 20, 77)( 21, 81)( 22, 85)( 23, 84)
( 24, 83)( 25, 82)( 26, 86)( 27, 90)( 28, 89)( 29, 88)( 30, 87)( 31, 91)
( 32, 95)( 33, 94)( 34, 93)( 35, 92)( 36, 96)( 37,100)( 38, 99)( 39, 98)
( 40, 97)( 41,101)( 42,105)( 43,104)( 44,103)( 45,102)( 46,106)( 47,110)
( 48,109)( 49,108)( 50,107)( 51,111)( 52,115)( 53,114)( 54,113)( 55,112)
( 56,116)( 57,120)( 58,119)( 59,118)( 60,117);
s2 := Sym(122)!( 1, 2)( 3, 5)( 6, 12)( 7, 11)( 8, 15)( 9, 14)( 10, 13)
( 16, 17)( 18, 20)( 21, 27)( 22, 26)( 23, 30)( 24, 29)( 25, 28)( 31, 32)
( 33, 35)( 36, 42)( 37, 41)( 38, 45)( 39, 44)( 40, 43)( 46, 47)( 48, 50)
( 51, 57)( 52, 56)( 53, 60)( 54, 59)( 55, 58)( 61, 92)( 62, 91)( 63, 95)
( 64, 94)( 65, 93)( 66,102)( 67,101)( 68,105)( 69,104)( 70,103)( 71, 97)
( 72, 96)( 73,100)( 74, 99)( 75, 98)( 76,107)( 77,106)( 78,110)( 79,109)
( 80,108)( 81,117)( 82,116)( 83,120)( 84,119)( 85,118)( 86,112)( 87,111)
( 88,115)( 89,114)( 90,113);
s3 := Sym(122)!( 1, 6)( 2, 7)( 3, 8)( 4, 9)( 5, 10)( 16, 21)( 17, 22)
( 18, 23)( 19, 24)( 20, 25)( 31, 36)( 32, 37)( 33, 38)( 34, 39)( 35, 40)
( 46, 51)( 47, 52)( 48, 53)( 49, 54)( 50, 55)( 61, 66)( 62, 67)( 63, 68)
( 64, 69)( 65, 70)( 76, 81)( 77, 82)( 78, 83)( 79, 84)( 80, 85)( 91, 96)
( 92, 97)( 93, 98)( 94, 99)( 95,100)(106,111)(107,112)(108,113)(109,114)
(110,115);
s4 := Sym(122)!(121,122);
poly := sub<Sym(122)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s3*s2*s1*s2*s3*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope