include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,2,30,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,2,30,4}*1920a
if this polytope has a name.
Group : SmallGroup(1920,208100)
Rank : 5
Schlafli Type : {4,2,30,4}
Number of vertices, edges, etc : 4, 4, 30, 60, 4
Order of s0s1s2s3s4 : 60
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,2,30,4}*960a, {4,2,30,2}*960
3-fold quotients : {4,2,10,4}*640
4-fold quotients : {4,2,15,2}*480, {2,2,30,2}*480
5-fold quotients : {4,2,6,4}*384a
6-fold quotients : {2,2,10,4}*320, {4,2,10,2}*320
8-fold quotients : {2,2,15,2}*240
10-fold quotients : {2,2,6,4}*192a, {4,2,6,2}*192
12-fold quotients : {4,2,5,2}*160, {2,2,10,2}*160
15-fold quotients : {4,2,2,4}*128
20-fold quotients : {4,2,3,2}*96, {2,2,6,2}*96
24-fold quotients : {2,2,5,2}*80
30-fold quotients : {2,2,2,4}*64, {4,2,2,2}*64
40-fold quotients : {2,2,3,2}*48
60-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2)(3,4);;
s2 := ( 6, 9)( 7, 8)(10,15)(11,19)(12,18)(13,17)(14,16)(21,24)(22,23)(25,30)
(26,34)(27,33)(28,32)(29,31)(36,39)(37,38)(40,45)(41,49)(42,48)(43,47)(44,46)
(51,54)(52,53)(55,60)(56,64)(57,63)(58,62)(59,61);;
s3 := ( 5,11)( 6,10)( 7,14)( 8,13)( 9,12)(15,16)(17,19)(20,26)(21,25)(22,29)
(23,28)(24,27)(30,31)(32,34)(35,56)(36,55)(37,59)(38,58)(39,57)(40,51)(41,50)
(42,54)(43,53)(44,52)(45,61)(46,60)(47,64)(48,63)(49,62);;
s4 := ( 5,35)( 6,36)( 7,37)( 8,38)( 9,39)(10,40)(11,41)(12,42)(13,43)(14,44)
(15,45)(16,46)(17,47)(18,48)(19,49)(20,50)(21,51)(22,52)(23,53)(24,54)(25,55)
(26,56)(27,57)(28,58)(29,59)(30,60)(31,61)(32,62)(33,63)(34,64);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s1*s0*s1*s0*s1*s0*s1, s2*s3*s4*s3*s2*s3*s4*s3,
s3*s4*s3*s4*s3*s4*s3*s4, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(64)!(2,3);
s1 := Sym(64)!(1,2)(3,4);
s2 := Sym(64)!( 6, 9)( 7, 8)(10,15)(11,19)(12,18)(13,17)(14,16)(21,24)(22,23)
(25,30)(26,34)(27,33)(28,32)(29,31)(36,39)(37,38)(40,45)(41,49)(42,48)(43,47)
(44,46)(51,54)(52,53)(55,60)(56,64)(57,63)(58,62)(59,61);
s3 := Sym(64)!( 5,11)( 6,10)( 7,14)( 8,13)( 9,12)(15,16)(17,19)(20,26)(21,25)
(22,29)(23,28)(24,27)(30,31)(32,34)(35,56)(36,55)(37,59)(38,58)(39,57)(40,51)
(41,50)(42,54)(43,53)(44,52)(45,61)(46,60)(47,64)(48,63)(49,62);
s4 := Sym(64)!( 5,35)( 6,36)( 7,37)( 8,38)( 9,39)(10,40)(11,41)(12,42)(13,43)
(14,44)(15,45)(16,46)(17,47)(18,48)(19,49)(20,50)(21,51)(22,52)(23,53)(24,54)
(25,55)(26,56)(27,57)(28,58)(29,59)(30,60)(31,61)(32,62)(33,63)(34,64);
poly := sub<Sym(64)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s4*s3*s2*s3*s4*s3, s3*s4*s3*s4*s3*s4*s3*s4,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope