Polytope of Type {4,2,30}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,2,30}*480
if this polytope has a name.
Group : SmallGroup(480,1169)
Rank : 4
Schlafli Type : {4,2,30}
Number of vertices, edges, etc : 4, 4, 30, 30
Order of s0s1s2s3 : 60
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {4,2,30,2} of size 960
   {4,2,30,4} of size 1920
   {4,2,30,4} of size 1920
   {4,2,30,4} of size 1920
Vertex Figure Of :
   {2,4,2,30} of size 960
   {3,4,2,30} of size 1440
   {4,4,2,30} of size 1920
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,2,15}*240, {2,2,30}*240
   3-fold quotients : {4,2,10}*160
   4-fold quotients : {2,2,15}*120
   5-fold quotients : {4,2,6}*96
   6-fold quotients : {4,2,5}*80, {2,2,10}*80
   10-fold quotients : {4,2,3}*48, {2,2,6}*48
   12-fold quotients : {2,2,5}*40
   15-fold quotients : {4,2,2}*32
   20-fold quotients : {2,2,3}*24
   30-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   2-fold covers : {4,2,60}*960, {4,4,30}*960, {8,2,30}*960
   3-fold covers : {4,2,90}*1440, {12,2,30}*1440, {4,6,30}*1440b, {4,6,30}*1440c
   4-fold covers : {4,4,60}*1920, {4,8,30}*1920a, {8,4,30}*1920a, {4,8,30}*1920b, {8,4,30}*1920b, {4,4,30}*1920a, {8,2,60}*1920, {4,2,120}*1920, {16,2,30}*1920, {4,4,30}*1920d
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2)(3,4);;
s2 := ( 7, 8)( 9,10)(11,12)(13,14)(15,18)(16,17)(19,20)(21,24)(22,23)(25,26)
(27,30)(28,29)(31,34)(32,33);;
s3 := ( 5,21)( 6,15)( 7,13)( 8,23)( 9,11)(10,31)(12,17)(14,27)(16,25)(18,33)
(19,22)(20,32)(24,29)(26,28)(30,34);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(34)!(2,3);
s1 := Sym(34)!(1,2)(3,4);
s2 := Sym(34)!( 7, 8)( 9,10)(11,12)(13,14)(15,18)(16,17)(19,20)(21,24)(22,23)
(25,26)(27,30)(28,29)(31,34)(32,33);
s3 := Sym(34)!( 5,21)( 6,15)( 7,13)( 8,23)( 9,11)(10,31)(12,17)(14,27)(16,25)
(18,33)(19,22)(20,32)(24,29)(26,28)(30,34);
poly := sub<Sym(34)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope