include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,2,10,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,10,4}*320
if this polytope has a name.
Group : SmallGroup(320,1612)
Rank : 5
Schlafli Type : {2,2,10,4}
Number of vertices, edges, etc : 2, 2, 10, 20, 4
Order of s0s1s2s3s4 : 20
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,2,10,4,2} of size 640
{2,2,10,4,4} of size 1280
{2,2,10,4,6} of size 1920
{2,2,10,4,3} of size 1920
Vertex Figure Of :
{2,2,2,10,4} of size 640
{3,2,2,10,4} of size 960
{4,2,2,10,4} of size 1280
{5,2,2,10,4} of size 1600
{6,2,2,10,4} of size 1920
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,2,10,2}*160
4-fold quotients : {2,2,5,2}*80
5-fold quotients : {2,2,2,4}*64
10-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
2-fold covers : {2,2,20,4}*640, {2,4,10,4}*640, {4,2,10,4}*640, {2,2,10,8}*640
3-fold covers : {2,2,10,12}*960, {2,6,10,4}*960, {6,2,10,4}*960, {2,2,30,4}*960a
4-fold covers : {2,4,20,4}*1280, {4,4,10,4}*1280, {4,2,20,4}*1280, {2,2,20,8}*1280a, {2,2,40,4}*1280a, {2,2,20,8}*1280b, {2,2,40,4}*1280b, {2,2,20,4}*1280, {4,2,10,8}*1280, {8,2,10,4}*1280, {2,4,10,8}*1280, {2,8,10,4}*1280, {2,2,10,16}*1280
5-fold covers : {2,2,50,4}*1600, {2,2,10,20}*1600a, {2,10,10,4}*1600a, {2,10,10,4}*1600b, {10,2,10,4}*1600, {2,2,10,20}*1600c
6-fold covers : {2,2,60,4}*1920a, {2,6,20,4}*1920, {6,2,20,4}*1920, {2,2,20,12}*1920, {4,2,30,4}*1920a, {2,4,30,4}*1920a, {4,6,10,4}*1920a, {6,4,10,4}*1920, {4,2,10,12}*1920, {12,2,10,4}*1920, {2,4,10,12}*1920, {2,12,10,4}*1920, {2,2,30,8}*1920, {2,6,10,8}*1920, {6,2,10,8}*1920, {2,2,10,24}*1920
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := ( 7, 8)(10,11)(12,13)(15,16)(17,18)(19,20)(21,22)(23,24);;
s3 := ( 5, 7)( 6,15)( 8,12)( 9,10)(11,21)(14,19)(16,17)(18,22)(20,23);;
s4 := ( 5, 6)( 7,10)( 8,11)( 9,14)(12,17)(13,18)(15,19)(16,20)(21,23)(22,24);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s2*s3*s4*s3*s2*s3*s4*s3,
s3*s4*s3*s4*s3*s4*s3*s4, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(24)!(1,2);
s1 := Sym(24)!(3,4);
s2 := Sym(24)!( 7, 8)(10,11)(12,13)(15,16)(17,18)(19,20)(21,22)(23,24);
s3 := Sym(24)!( 5, 7)( 6,15)( 8,12)( 9,10)(11,21)(14,19)(16,17)(18,22)(20,23);
s4 := Sym(24)!( 5, 6)( 7,10)( 8,11)( 9,14)(12,17)(13,18)(15,19)(16,20)(21,23)
(22,24);
poly := sub<Sym(24)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s2*s3*s4*s3*s2*s3*s4*s3, s3*s4*s3*s4*s3*s4*s3*s4,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope