Polytope of Type {4,2,12,10}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,2,12,10}*1920
if this polytope has a name.
Group : SmallGroup(1920,208125)
Rank : 5
Schlafli Type : {4,2,12,10}
Number of vertices, edges, etc : 4, 4, 12, 60, 10
Order of s0s1s2s3s4 : 60
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,2,12,10}*960, {4,2,6,10}*960
   3-fold quotients : {4,2,4,10}*640
   4-fold quotients : {2,2,6,10}*480
   5-fold quotients : {4,2,12,2}*384
   6-fold quotients : {2,2,4,10}*320, {4,2,2,10}*320
   10-fold quotients : {2,2,12,2}*192, {4,2,6,2}*192
   12-fold quotients : {4,2,2,5}*160, {2,2,2,10}*160
   15-fold quotients : {4,2,4,2}*128
   20-fold quotients : {4,2,3,2}*96, {2,2,6,2}*96
   24-fold quotients : {2,2,2,5}*80
   30-fold quotients : {2,2,4,2}*64, {4,2,2,2}*64
   40-fold quotients : {2,2,3,2}*48
   60-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2)(3,4);;
s2 := (10,15)(11,16)(12,17)(13,18)(14,19)(25,30)(26,31)(27,32)(28,33)(29,34)
(35,50)(36,51)(37,52)(38,53)(39,54)(40,60)(41,61)(42,62)(43,63)(44,64)(45,55)
(46,56)(47,57)(48,58)(49,59);;
s3 := ( 5,40)( 6,44)( 7,43)( 8,42)( 9,41)(10,35)(11,39)(12,38)(13,37)(14,36)
(15,45)(16,49)(17,48)(18,47)(19,46)(20,55)(21,59)(22,58)(23,57)(24,56)(25,50)
(26,54)(27,53)(28,52)(29,51)(30,60)(31,64)(32,63)(33,62)(34,61);;
s4 := ( 5, 6)( 7, 9)(10,11)(12,14)(15,16)(17,19)(20,21)(22,24)(25,26)(27,29)
(30,31)(32,34)(35,36)(37,39)(40,41)(42,44)(45,46)(47,49)(50,51)(52,54)(55,56)
(57,59)(60,61)(62,64);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s0*s1*s0*s1*s0*s1*s0*s1, s2*s3*s4*s3*s2*s3*s4*s3, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(64)!(2,3);
s1 := Sym(64)!(1,2)(3,4);
s2 := Sym(64)!(10,15)(11,16)(12,17)(13,18)(14,19)(25,30)(26,31)(27,32)(28,33)
(29,34)(35,50)(36,51)(37,52)(38,53)(39,54)(40,60)(41,61)(42,62)(43,63)(44,64)
(45,55)(46,56)(47,57)(48,58)(49,59);
s3 := Sym(64)!( 5,40)( 6,44)( 7,43)( 8,42)( 9,41)(10,35)(11,39)(12,38)(13,37)
(14,36)(15,45)(16,49)(17,48)(18,47)(19,46)(20,55)(21,59)(22,58)(23,57)(24,56)
(25,50)(26,54)(27,53)(28,52)(29,51)(30,60)(31,64)(32,63)(33,62)(34,61);
s4 := Sym(64)!( 5, 6)( 7, 9)(10,11)(12,14)(15,16)(17,19)(20,21)(22,24)(25,26)
(27,29)(30,31)(32,34)(35,36)(37,39)(40,41)(42,44)(45,46)(47,49)(50,51)(52,54)
(55,56)(57,59)(60,61)(62,64);
poly := sub<Sym(64)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s4*s3*s2*s3*s4*s3, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope