include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,2,4,10}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,2,4,10}*640
if this polytope has a name.
Group : SmallGroup(640,20602)
Rank : 5
Schlafli Type : {4,2,4,10}
Number of vertices, edges, etc : 4, 4, 4, 20, 10
Order of s0s1s2s3s4 : 20
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{4,2,4,10,2} of size 1280
Vertex Figure Of :
{2,4,2,4,10} of size 1280
{3,4,2,4,10} of size 1920
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,2,4,10}*320, {4,2,2,10}*320
4-fold quotients : {4,2,2,5}*160, {2,2,2,10}*160
5-fold quotients : {4,2,4,2}*128
8-fold quotients : {2,2,2,5}*80
10-fold quotients : {2,2,4,2}*64, {4,2,2,2}*64
20-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
2-fold covers : {4,4,4,10}*1280, {4,2,4,20}*1280, {4,2,8,10}*1280, {8,2,4,10}*1280
3-fold covers : {4,2,4,30}*1920a, {4,6,4,10}*1920a, {4,2,12,10}*1920, {12,2,4,10}*1920
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2)(3,4);;
s2 := ( 6, 9)(10,15)(11,16)(17,21)(18,22);;
s3 := ( 5, 6)( 7,11)( 8,10)( 9,14)(12,18)(13,17)(15,20)(16,19)(21,24)(22,23);;
s4 := ( 5, 7)( 6,10)( 8,12)( 9,15)(11,17)(14,19)(16,21)(20,23);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s1*s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3,
s2*s3*s4*s3*s2*s3*s4*s3, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(24)!(2,3);
s1 := Sym(24)!(1,2)(3,4);
s2 := Sym(24)!( 6, 9)(10,15)(11,16)(17,21)(18,22);
s3 := Sym(24)!( 5, 6)( 7,11)( 8,10)( 9,14)(12,18)(13,17)(15,20)(16,19)(21,24)
(22,23);
s4 := Sym(24)!( 5, 7)( 6,10)( 8,12)( 9,15)(11,17)(14,19)(16,21)(20,23);
poly := sub<Sym(24)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3, s2*s3*s4*s3*s2*s3*s4*s3,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
to this polytope