include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,30,2,8}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,30,2,8}*1920
if this polytope has a name.
Group : SmallGroup(1920,235336)
Rank : 5
Schlafli Type : {2,30,2,8}
Number of vertices, edges, etc : 2, 30, 30, 8, 8
Order of s0s1s2s3s4 : 120
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,15,2,8}*960, {2,30,2,4}*960
3-fold quotients : {2,10,2,8}*640
4-fold quotients : {2,15,2,4}*480, {2,30,2,2}*480
5-fold quotients : {2,6,2,8}*384
6-fold quotients : {2,5,2,8}*320, {2,10,2,4}*320
8-fold quotients : {2,15,2,2}*240
10-fold quotients : {2,3,2,8}*192, {2,6,2,4}*192
12-fold quotients : {2,5,2,4}*160, {2,10,2,2}*160
15-fold quotients : {2,2,2,8}*128
20-fold quotients : {2,3,2,4}*96, {2,6,2,2}*96
24-fold quotients : {2,5,2,2}*80
30-fold quotients : {2,2,2,4}*64
40-fold quotients : {2,3,2,2}*48
60-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 5, 6)( 7, 8)( 9,10)(11,12)(13,16)(14,15)(17,18)(19,22)(20,21)(23,24)
(25,28)(26,27)(29,32)(30,31);;
s2 := ( 3,19)( 4,13)( 5,11)( 6,21)( 7, 9)( 8,29)(10,15)(12,25)(14,23)(16,31)
(17,20)(18,30)(22,27)(24,26)(28,32);;
s3 := (34,35)(36,37)(38,39);;
s4 := (33,34)(35,36)(37,38)(39,40);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(40)!(1,2);
s1 := Sym(40)!( 5, 6)( 7, 8)( 9,10)(11,12)(13,16)(14,15)(17,18)(19,22)(20,21)
(23,24)(25,28)(26,27)(29,32)(30,31);
s2 := Sym(40)!( 3,19)( 4,13)( 5,11)( 6,21)( 7, 9)( 8,29)(10,15)(12,25)(14,23)
(16,31)(17,20)(18,30)(22,27)(24,26)(28,32);
s3 := Sym(40)!(34,35)(36,37)(38,39);
s4 := Sym(40)!(33,34)(35,36)(37,38)(39,40);
poly := sub<Sym(40)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope