include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {30,8,2,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {30,8,2,2}*1920
if this polytope has a name.
Group : SmallGroup(1920,235336)
Rank : 5
Schlafli Type : {30,8,2,2}
Number of vertices, edges, etc : 30, 120, 8, 2, 2
Order of s0s1s2s3s4 : 120
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {30,4,2,2}*960a
3-fold quotients : {10,8,2,2}*640
4-fold quotients : {30,2,2,2}*480
5-fold quotients : {6,8,2,2}*384
6-fold quotients : {10,4,2,2}*320
8-fold quotients : {15,2,2,2}*240
10-fold quotients : {6,4,2,2}*192a
12-fold quotients : {10,2,2,2}*160
15-fold quotients : {2,8,2,2}*128
20-fold quotients : {6,2,2,2}*96
24-fold quotients : {5,2,2,2}*80
30-fold quotients : {2,4,2,2}*64
40-fold quotients : {3,2,2,2}*48
60-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 5)( 3, 4)( 6, 11)( 7, 15)( 8, 14)( 9, 13)( 10, 12)( 17, 20)
( 18, 19)( 21, 26)( 22, 30)( 23, 29)( 24, 28)( 25, 27)( 32, 35)( 33, 34)
( 36, 41)( 37, 45)( 38, 44)( 39, 43)( 40, 42)( 47, 50)( 48, 49)( 51, 56)
( 52, 60)( 53, 59)( 54, 58)( 55, 57)( 62, 65)( 63, 64)( 66, 71)( 67, 75)
( 68, 74)( 69, 73)( 70, 72)( 77, 80)( 78, 79)( 81, 86)( 82, 90)( 83, 89)
( 84, 88)( 85, 87)( 92, 95)( 93, 94)( 96,101)( 97,105)( 98,104)( 99,103)
(100,102)(107,110)(108,109)(111,116)(112,120)(113,119)(114,118)(115,117);;
s1 := ( 1, 7)( 2, 6)( 3, 10)( 4, 9)( 5, 8)( 11, 12)( 13, 15)( 16, 22)
( 17, 21)( 18, 25)( 19, 24)( 20, 23)( 26, 27)( 28, 30)( 31, 52)( 32, 51)
( 33, 55)( 34, 54)( 35, 53)( 36, 47)( 37, 46)( 38, 50)( 39, 49)( 40, 48)
( 41, 57)( 42, 56)( 43, 60)( 44, 59)( 45, 58)( 61, 97)( 62, 96)( 63,100)
( 64, 99)( 65, 98)( 66, 92)( 67, 91)( 68, 95)( 69, 94)( 70, 93)( 71,102)
( 72,101)( 73,105)( 74,104)( 75,103)( 76,112)( 77,111)( 78,115)( 79,114)
( 80,113)( 81,107)( 82,106)( 83,110)( 84,109)( 85,108)( 86,117)( 87,116)
( 88,120)( 89,119)( 90,118);;
s2 := ( 1, 61)( 2, 62)( 3, 63)( 4, 64)( 5, 65)( 6, 66)( 7, 67)( 8, 68)
( 9, 69)( 10, 70)( 11, 71)( 12, 72)( 13, 73)( 14, 74)( 15, 75)( 16, 76)
( 17, 77)( 18, 78)( 19, 79)( 20, 80)( 21, 81)( 22, 82)( 23, 83)( 24, 84)
( 25, 85)( 26, 86)( 27, 87)( 28, 88)( 29, 89)( 30, 90)( 31,106)( 32,107)
( 33,108)( 34,109)( 35,110)( 36,111)( 37,112)( 38,113)( 39,114)( 40,115)
( 41,116)( 42,117)( 43,118)( 44,119)( 45,120)( 46, 91)( 47, 92)( 48, 93)
( 49, 94)( 50, 95)( 51, 96)( 52, 97)( 53, 98)( 54, 99)( 55,100)( 56,101)
( 57,102)( 58,103)( 59,104)( 60,105);;
s3 := (121,122);;
s4 := (123,124);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(124)!( 2, 5)( 3, 4)( 6, 11)( 7, 15)( 8, 14)( 9, 13)( 10, 12)
( 17, 20)( 18, 19)( 21, 26)( 22, 30)( 23, 29)( 24, 28)( 25, 27)( 32, 35)
( 33, 34)( 36, 41)( 37, 45)( 38, 44)( 39, 43)( 40, 42)( 47, 50)( 48, 49)
( 51, 56)( 52, 60)( 53, 59)( 54, 58)( 55, 57)( 62, 65)( 63, 64)( 66, 71)
( 67, 75)( 68, 74)( 69, 73)( 70, 72)( 77, 80)( 78, 79)( 81, 86)( 82, 90)
( 83, 89)( 84, 88)( 85, 87)( 92, 95)( 93, 94)( 96,101)( 97,105)( 98,104)
( 99,103)(100,102)(107,110)(108,109)(111,116)(112,120)(113,119)(114,118)
(115,117);
s1 := Sym(124)!( 1, 7)( 2, 6)( 3, 10)( 4, 9)( 5, 8)( 11, 12)( 13, 15)
( 16, 22)( 17, 21)( 18, 25)( 19, 24)( 20, 23)( 26, 27)( 28, 30)( 31, 52)
( 32, 51)( 33, 55)( 34, 54)( 35, 53)( 36, 47)( 37, 46)( 38, 50)( 39, 49)
( 40, 48)( 41, 57)( 42, 56)( 43, 60)( 44, 59)( 45, 58)( 61, 97)( 62, 96)
( 63,100)( 64, 99)( 65, 98)( 66, 92)( 67, 91)( 68, 95)( 69, 94)( 70, 93)
( 71,102)( 72,101)( 73,105)( 74,104)( 75,103)( 76,112)( 77,111)( 78,115)
( 79,114)( 80,113)( 81,107)( 82,106)( 83,110)( 84,109)( 85,108)( 86,117)
( 87,116)( 88,120)( 89,119)( 90,118);
s2 := Sym(124)!( 1, 61)( 2, 62)( 3, 63)( 4, 64)( 5, 65)( 6, 66)( 7, 67)
( 8, 68)( 9, 69)( 10, 70)( 11, 71)( 12, 72)( 13, 73)( 14, 74)( 15, 75)
( 16, 76)( 17, 77)( 18, 78)( 19, 79)( 20, 80)( 21, 81)( 22, 82)( 23, 83)
( 24, 84)( 25, 85)( 26, 86)( 27, 87)( 28, 88)( 29, 89)( 30, 90)( 31,106)
( 32,107)( 33,108)( 34,109)( 35,110)( 36,111)( 37,112)( 38,113)( 39,114)
( 40,115)( 41,116)( 42,117)( 43,118)( 44,119)( 45,120)( 46, 91)( 47, 92)
( 48, 93)( 49, 94)( 50, 95)( 51, 96)( 52, 97)( 53, 98)( 54, 99)( 55,100)
( 56,101)( 57,102)( 58,103)( 59,104)( 60,105);
s3 := Sym(124)!(121,122);
s4 := Sym(124)!(123,124);
poly := sub<Sym(124)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope