include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,6,2,2,10}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,6,2,2,10}*1920a
if this polytope has a name.
Group : SmallGroup(1920,236178)
Rank : 6
Schlafli Type : {4,6,2,2,10}
Number of vertices, edges, etc : 4, 12, 6, 2, 10, 10
Order of s0s1s2s3s4s5 : 60
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,6,2,2,5}*960a, {2,6,2,2,10}*960
3-fold quotients : {4,2,2,2,10}*640
4-fold quotients : {2,3,2,2,10}*480, {2,6,2,2,5}*480
5-fold quotients : {4,6,2,2,2}*384a
6-fold quotients : {4,2,2,2,5}*320, {2,2,2,2,10}*320
8-fold quotients : {2,3,2,2,5}*240
10-fold quotients : {2,6,2,2,2}*192
12-fold quotients : {2,2,2,2,5}*160
15-fold quotients : {4,2,2,2,2}*128
20-fold quotients : {2,3,2,2,2}*96
30-fold quotients : {2,2,2,2,2}*64
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 5)( 6, 9)( 7,10);;
s1 := ( 1, 2)( 3, 7)( 4, 6)( 5, 8)( 9,12)(10,11);;
s2 := ( 1, 3)( 2, 6)( 5, 9)( 8,11);;
s3 := (13,14);;
s4 := (17,18)(19,20)(21,22)(23,24);;
s5 := (15,19)(16,17)(18,23)(20,21)(22,24);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(24)!( 2, 5)( 6, 9)( 7,10);
s1 := Sym(24)!( 1, 2)( 3, 7)( 4, 6)( 5, 8)( 9,12)(10,11);
s2 := Sym(24)!( 1, 3)( 2, 6)( 5, 9)( 8,11);
s3 := Sym(24)!(13,14);
s4 := Sym(24)!(17,18)(19,20)(21,22)(23,24);
s5 := Sym(24)!(15,19)(16,17)(18,23)(20,21)(22,24);
poly := sub<Sym(24)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5,
s3*s5*s3*s5, s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5 >;
to this polytope