Polytope of Type {2,2,6,4,10}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,6,4,10}*1920
if this polytope has a name.
Group : SmallGroup(1920,236178)
Rank : 6
Schlafli Type : {2,2,6,4,10}
Number of vertices, edges, etc : 2, 2, 6, 12, 20, 10
Order of s0s1s2s3s4s5 : 60
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,2,6,2,10}*960
   3-fold quotients : {2,2,2,4,10}*640
   4-fold quotients : {2,2,3,2,10}*480, {2,2,6,2,5}*480
   5-fold quotients : {2,2,6,4,2}*384a
   6-fold quotients : {2,2,2,2,10}*320
   8-fold quotients : {2,2,3,2,5}*240
   10-fold quotients : {2,2,6,2,2}*192
   12-fold quotients : {2,2,2,2,5}*160
   15-fold quotients : {2,2,2,4,2}*128
   20-fold quotients : {2,2,3,2,2}*96
   30-fold quotients : {2,2,2,2,2}*64
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := (10,15)(11,16)(12,17)(13,18)(14,19)(25,30)(26,31)(27,32)(28,33)(29,34)
(40,45)(41,46)(42,47)(43,48)(44,49)(55,60)(56,61)(57,62)(58,63)(59,64);;
s3 := ( 5,10)( 6,11)( 7,12)( 8,13)( 9,14)(20,25)(21,26)(22,27)(23,28)(24,29)
(35,55)(36,56)(37,57)(38,58)(39,59)(40,50)(41,51)(42,52)(43,53)(44,54)(45,60)
(46,61)(47,62)(48,63)(49,64);;
s4 := ( 5,35)( 6,39)( 7,38)( 8,37)( 9,36)(10,40)(11,44)(12,43)(13,42)(14,41)
(15,45)(16,49)(17,48)(18,47)(19,46)(20,50)(21,54)(22,53)(23,52)(24,51)(25,55)
(26,59)(27,58)(28,57)(29,56)(30,60)(31,64)(32,63)(33,62)(34,61);;
s5 := ( 5, 6)( 7, 9)(10,11)(12,14)(15,16)(17,19)(20,21)(22,24)(25,26)(27,29)
(30,31)(32,34)(35,36)(37,39)(40,41)(42,44)(45,46)(47,49)(50,51)(52,54)(55,56)
(57,59)(60,61)(62,64);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  s5 := F.6;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5, 
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5, 
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5, 
s2*s3*s4*s3*s2*s3*s4*s3, s3*s4*s3*s4*s3*s4*s3*s4, 
s3*s4*s5*s4*s3*s4*s5*s4, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(64)!(1,2);
s1 := Sym(64)!(3,4);
s2 := Sym(64)!(10,15)(11,16)(12,17)(13,18)(14,19)(25,30)(26,31)(27,32)(28,33)
(29,34)(40,45)(41,46)(42,47)(43,48)(44,49)(55,60)(56,61)(57,62)(58,63)(59,64);
s3 := Sym(64)!( 5,10)( 6,11)( 7,12)( 8,13)( 9,14)(20,25)(21,26)(22,27)(23,28)
(24,29)(35,55)(36,56)(37,57)(38,58)(39,59)(40,50)(41,51)(42,52)(43,53)(44,54)
(45,60)(46,61)(47,62)(48,63)(49,64);
s4 := Sym(64)!( 5,35)( 6,39)( 7,38)( 8,37)( 9,36)(10,40)(11,44)(12,43)(13,42)
(14,41)(15,45)(16,49)(17,48)(18,47)(19,46)(20,50)(21,54)(22,53)(23,52)(24,51)
(25,55)(26,59)(27,58)(28,57)(29,56)(30,60)(31,64)(32,63)(33,62)(34,61);
s5 := Sym(64)!( 5, 6)( 7, 9)(10,11)(12,14)(15,16)(17,19)(20,21)(22,24)(25,26)
(27,29)(30,31)(32,34)(35,36)(37,39)(40,41)(42,44)(45,46)(47,49)(50,51)(52,54)
(55,56)(57,59)(60,61)(62,64);
poly := sub<Sym(64)|s0,s1,s2,s3,s4,s5>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5, 
s3*s5*s3*s5, s2*s3*s4*s3*s2*s3*s4*s3, 
s3*s4*s3*s4*s3*s4*s3*s4, s3*s4*s5*s4*s3*s4*s5*s4, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5 >; 
 

to this polytope