Polytope of Type {8,30}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,30}*1920c
if this polytope has a name.
Group : SmallGroup(1920,237638)
Rank : 3
Schlafli Type : {8,30}
Number of vertices, edges, etc : 32, 480, 120
Order of s0s1s2 : 30
Order of s0s1s2s1 : 4
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Non-Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,30}*960a
   5-fold quotients : {8,6}*384c
   8-fold quotients : {4,30}*240b
   10-fold quotients : {4,6}*192a
   16-fold quotients : {4,15}*120
   40-fold quotients : {4,6}*48c
   80-fold quotients : {4,3}*24
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1, 17)(  2, 18)(  3, 20)(  4, 19)(  5, 21)(  6, 22)(  7, 24)(  8, 23)
(  9, 25)( 10, 26)( 11, 28)( 12, 27)( 13, 29)( 14, 30)( 15, 32)( 16, 31)
( 33, 49)( 34, 50)( 35, 52)( 36, 51)( 37, 53)( 38, 54)( 39, 56)( 40, 55)
( 41, 57)( 42, 58)( 43, 60)( 44, 59)( 45, 61)( 46, 62)( 47, 64)( 48, 63)
( 65, 81)( 66, 82)( 67, 84)( 68, 83)( 69, 85)( 70, 86)( 71, 88)( 72, 87)
( 73, 89)( 74, 90)( 75, 92)( 76, 91)( 77, 93)( 78, 94)( 79, 96)( 80, 95)
( 97,113)( 98,114)( 99,116)(100,115)(101,117)(102,118)(103,120)(104,119)
(105,121)(106,122)(107,124)(108,123)(109,125)(110,126)(111,128)(112,127)
(129,145)(130,146)(131,148)(132,147)(133,149)(134,150)(135,152)(136,151)
(137,153)(138,154)(139,156)(140,155)(141,157)(142,158)(143,160)(144,159);;
s1 := (  5,  7)(  6,  8)(  9, 12)( 10, 11)( 13, 14)( 15, 16)( 17, 32)( 18, 31)
( 19, 30)( 20, 29)( 21, 26)( 22, 25)( 23, 28)( 24, 27)( 33,129)( 34,130)
( 35,131)( 36,132)( 37,135)( 38,136)( 39,133)( 40,134)( 41,140)( 42,139)
( 43,138)( 44,137)( 45,142)( 46,141)( 47,144)( 48,143)( 49,160)( 50,159)
( 51,158)( 52,157)( 53,154)( 54,153)( 55,156)( 56,155)( 57,150)( 58,149)
( 59,152)( 60,151)( 61,148)( 62,147)( 63,146)( 64,145)( 65, 97)( 66, 98)
( 67, 99)( 68,100)( 69,103)( 70,104)( 71,101)( 72,102)( 73,108)( 74,107)
( 75,106)( 76,105)( 77,110)( 78,109)( 79,112)( 80,111)( 81,128)( 82,127)
( 83,126)( 84,125)( 85,122)( 86,121)( 87,124)( 88,123)( 89,118)( 90,117)
( 91,120)( 92,119)( 93,116)( 94,115)( 95,114)( 96,113);;
s2 := (  1, 37)(  2, 38)(  3, 35)(  4, 36)(  5, 33)(  6, 34)(  7, 39)(  8, 40)
(  9, 61)( 10, 62)( 11, 59)( 12, 60)( 13, 57)( 14, 58)( 15, 63)( 16, 64)
( 17, 53)( 18, 54)( 19, 51)( 20, 52)( 21, 49)( 22, 50)( 23, 55)( 24, 56)
( 25, 45)( 26, 46)( 27, 43)( 28, 44)( 29, 41)( 30, 42)( 31, 47)( 32, 48)
( 65,133)( 66,134)( 67,131)( 68,132)( 69,129)( 70,130)( 71,135)( 72,136)
( 73,157)( 74,158)( 75,155)( 76,156)( 77,153)( 78,154)( 79,159)( 80,160)
( 81,149)( 82,150)( 83,147)( 84,148)( 85,145)( 86,146)( 87,151)( 88,152)
( 89,141)( 90,142)( 91,139)( 92,140)( 93,137)( 94,138)( 95,143)( 96,144)
( 97,101)( 98,102)(105,125)(106,126)(107,123)(108,124)(109,121)(110,122)
(111,127)(112,128)(113,117)(114,118);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s0*s1*s2*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s2*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(160)!(  1, 17)(  2, 18)(  3, 20)(  4, 19)(  5, 21)(  6, 22)(  7, 24)
(  8, 23)(  9, 25)( 10, 26)( 11, 28)( 12, 27)( 13, 29)( 14, 30)( 15, 32)
( 16, 31)( 33, 49)( 34, 50)( 35, 52)( 36, 51)( 37, 53)( 38, 54)( 39, 56)
( 40, 55)( 41, 57)( 42, 58)( 43, 60)( 44, 59)( 45, 61)( 46, 62)( 47, 64)
( 48, 63)( 65, 81)( 66, 82)( 67, 84)( 68, 83)( 69, 85)( 70, 86)( 71, 88)
( 72, 87)( 73, 89)( 74, 90)( 75, 92)( 76, 91)( 77, 93)( 78, 94)( 79, 96)
( 80, 95)( 97,113)( 98,114)( 99,116)(100,115)(101,117)(102,118)(103,120)
(104,119)(105,121)(106,122)(107,124)(108,123)(109,125)(110,126)(111,128)
(112,127)(129,145)(130,146)(131,148)(132,147)(133,149)(134,150)(135,152)
(136,151)(137,153)(138,154)(139,156)(140,155)(141,157)(142,158)(143,160)
(144,159);
s1 := Sym(160)!(  5,  7)(  6,  8)(  9, 12)( 10, 11)( 13, 14)( 15, 16)( 17, 32)
( 18, 31)( 19, 30)( 20, 29)( 21, 26)( 22, 25)( 23, 28)( 24, 27)( 33,129)
( 34,130)( 35,131)( 36,132)( 37,135)( 38,136)( 39,133)( 40,134)( 41,140)
( 42,139)( 43,138)( 44,137)( 45,142)( 46,141)( 47,144)( 48,143)( 49,160)
( 50,159)( 51,158)( 52,157)( 53,154)( 54,153)( 55,156)( 56,155)( 57,150)
( 58,149)( 59,152)( 60,151)( 61,148)( 62,147)( 63,146)( 64,145)( 65, 97)
( 66, 98)( 67, 99)( 68,100)( 69,103)( 70,104)( 71,101)( 72,102)( 73,108)
( 74,107)( 75,106)( 76,105)( 77,110)( 78,109)( 79,112)( 80,111)( 81,128)
( 82,127)( 83,126)( 84,125)( 85,122)( 86,121)( 87,124)( 88,123)( 89,118)
( 90,117)( 91,120)( 92,119)( 93,116)( 94,115)( 95,114)( 96,113);
s2 := Sym(160)!(  1, 37)(  2, 38)(  3, 35)(  4, 36)(  5, 33)(  6, 34)(  7, 39)
(  8, 40)(  9, 61)( 10, 62)( 11, 59)( 12, 60)( 13, 57)( 14, 58)( 15, 63)
( 16, 64)( 17, 53)( 18, 54)( 19, 51)( 20, 52)( 21, 49)( 22, 50)( 23, 55)
( 24, 56)( 25, 45)( 26, 46)( 27, 43)( 28, 44)( 29, 41)( 30, 42)( 31, 47)
( 32, 48)( 65,133)( 66,134)( 67,131)( 68,132)( 69,129)( 70,130)( 71,135)
( 72,136)( 73,157)( 74,158)( 75,155)( 76,156)( 77,153)( 78,154)( 79,159)
( 80,160)( 81,149)( 82,150)( 83,147)( 84,148)( 85,145)( 86,146)( 87,151)
( 88,152)( 89,141)( 90,142)( 91,139)( 92,140)( 93,137)( 94,138)( 95,143)
( 96,144)( 97,101)( 98,102)(105,125)(106,126)(107,123)(108,124)(109,121)
(110,122)(111,127)(112,128)(113,117)(114,118);
poly := sub<Sym(160)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s0*s1*s2*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s2*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 
References : None.
to this polytope