include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {30,8}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {30,8}*1920c
if this polytope has a name.
Group : SmallGroup(1920,237638)
Rank : 3
Schlafli Type : {30,8}
Number of vertices, edges, etc : 120, 480, 32
Order of s0s1s2 : 30
Order of s0s1s2s1 : 4
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Non-Orientable
Self-Petrie
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {30,4}*960a
5-fold quotients : {6,8}*384c
8-fold quotients : {30,4}*240b
10-fold quotients : {6,4}*192a
16-fold quotients : {15,4}*120
40-fold quotients : {6,4}*48c
80-fold quotients : {3,4}*24
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 5, 7)( 6, 8)( 13, 15)( 14, 16)( 17, 25)( 18, 26)( 19, 27)( 20, 28)
( 21, 31)( 22, 32)( 23, 29)( 24, 30)( 33,129)( 34,130)( 35,131)( 36,132)
( 37,135)( 38,136)( 39,133)( 40,134)( 41,137)( 42,138)( 43,139)( 44,140)
( 45,143)( 46,144)( 47,141)( 48,142)( 49,153)( 50,154)( 51,155)( 52,156)
( 53,159)( 54,160)( 55,157)( 56,158)( 57,145)( 58,146)( 59,147)( 60,148)
( 61,151)( 62,152)( 63,149)( 64,150)( 65, 97)( 66, 98)( 67, 99)( 68,100)
( 69,103)( 70,104)( 71,101)( 72,102)( 73,105)( 74,106)( 75,107)( 76,108)
( 77,111)( 78,112)( 79,109)( 80,110)( 81,121)( 82,122)( 83,123)( 84,124)
( 85,127)( 86,128)( 87,125)( 88,126)( 89,113)( 90,114)( 91,115)( 92,116)
( 93,119)( 94,120)( 95,117)( 96,118);;
s1 := ( 1, 33)( 2, 34)( 3, 39)( 4, 40)( 5, 37)( 6, 38)( 7, 35)( 8, 36)
( 9, 64)( 10, 63)( 11, 58)( 12, 57)( 13, 60)( 14, 59)( 15, 62)( 16, 61)
( 17, 54)( 18, 53)( 19, 52)( 20, 51)( 21, 50)( 22, 49)( 23, 56)( 24, 55)
( 25, 44)( 26, 43)( 27, 46)( 28, 45)( 29, 48)( 30, 47)( 31, 42)( 32, 41)
( 65,129)( 66,130)( 67,135)( 68,136)( 69,133)( 70,134)( 71,131)( 72,132)
( 73,160)( 74,159)( 75,154)( 76,153)( 77,156)( 78,155)( 79,158)( 80,157)
( 81,150)( 82,149)( 83,148)( 84,147)( 85,146)( 86,145)( 87,152)( 88,151)
( 89,140)( 90,139)( 91,142)( 92,141)( 93,144)( 94,143)( 95,138)( 96,137)
( 99,103)(100,104)(105,128)(106,127)(107,122)(108,121)(109,124)(110,123)
(111,126)(112,125)(113,118)(114,117)(115,116)(119,120);;
s2 := ( 1, 11)( 2, 12)( 3, 9)( 4, 10)( 5, 16)( 6, 15)( 7, 14)( 8, 13)
( 17, 27)( 18, 28)( 19, 25)( 20, 26)( 21, 32)( 22, 31)( 23, 30)( 24, 29)
( 33, 43)( 34, 44)( 35, 41)( 36, 42)( 37, 48)( 38, 47)( 39, 46)( 40, 45)
( 49, 59)( 50, 60)( 51, 57)( 52, 58)( 53, 64)( 54, 63)( 55, 62)( 56, 61)
( 65, 75)( 66, 76)( 67, 73)( 68, 74)( 69, 80)( 70, 79)( 71, 78)( 72, 77)
( 81, 91)( 82, 92)( 83, 89)( 84, 90)( 85, 96)( 86, 95)( 87, 94)( 88, 93)
( 97,107)( 98,108)( 99,105)(100,106)(101,112)(102,111)(103,110)(104,109)
(113,123)(114,124)(115,121)(116,122)(117,128)(118,127)(119,126)(120,125)
(129,139)(130,140)(131,137)(132,138)(133,144)(134,143)(135,142)(136,141)
(145,155)(146,156)(147,153)(148,154)(149,160)(150,159)(151,158)(152,157);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1,
s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s2*s1*s0*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(160)!( 5, 7)( 6, 8)( 13, 15)( 14, 16)( 17, 25)( 18, 26)( 19, 27)
( 20, 28)( 21, 31)( 22, 32)( 23, 29)( 24, 30)( 33,129)( 34,130)( 35,131)
( 36,132)( 37,135)( 38,136)( 39,133)( 40,134)( 41,137)( 42,138)( 43,139)
( 44,140)( 45,143)( 46,144)( 47,141)( 48,142)( 49,153)( 50,154)( 51,155)
( 52,156)( 53,159)( 54,160)( 55,157)( 56,158)( 57,145)( 58,146)( 59,147)
( 60,148)( 61,151)( 62,152)( 63,149)( 64,150)( 65, 97)( 66, 98)( 67, 99)
( 68,100)( 69,103)( 70,104)( 71,101)( 72,102)( 73,105)( 74,106)( 75,107)
( 76,108)( 77,111)( 78,112)( 79,109)( 80,110)( 81,121)( 82,122)( 83,123)
( 84,124)( 85,127)( 86,128)( 87,125)( 88,126)( 89,113)( 90,114)( 91,115)
( 92,116)( 93,119)( 94,120)( 95,117)( 96,118);
s1 := Sym(160)!( 1, 33)( 2, 34)( 3, 39)( 4, 40)( 5, 37)( 6, 38)( 7, 35)
( 8, 36)( 9, 64)( 10, 63)( 11, 58)( 12, 57)( 13, 60)( 14, 59)( 15, 62)
( 16, 61)( 17, 54)( 18, 53)( 19, 52)( 20, 51)( 21, 50)( 22, 49)( 23, 56)
( 24, 55)( 25, 44)( 26, 43)( 27, 46)( 28, 45)( 29, 48)( 30, 47)( 31, 42)
( 32, 41)( 65,129)( 66,130)( 67,135)( 68,136)( 69,133)( 70,134)( 71,131)
( 72,132)( 73,160)( 74,159)( 75,154)( 76,153)( 77,156)( 78,155)( 79,158)
( 80,157)( 81,150)( 82,149)( 83,148)( 84,147)( 85,146)( 86,145)( 87,152)
( 88,151)( 89,140)( 90,139)( 91,142)( 92,141)( 93,144)( 94,143)( 95,138)
( 96,137)( 99,103)(100,104)(105,128)(106,127)(107,122)(108,121)(109,124)
(110,123)(111,126)(112,125)(113,118)(114,117)(115,116)(119,120);
s2 := Sym(160)!( 1, 11)( 2, 12)( 3, 9)( 4, 10)( 5, 16)( 6, 15)( 7, 14)
( 8, 13)( 17, 27)( 18, 28)( 19, 25)( 20, 26)( 21, 32)( 22, 31)( 23, 30)
( 24, 29)( 33, 43)( 34, 44)( 35, 41)( 36, 42)( 37, 48)( 38, 47)( 39, 46)
( 40, 45)( 49, 59)( 50, 60)( 51, 57)( 52, 58)( 53, 64)( 54, 63)( 55, 62)
( 56, 61)( 65, 75)( 66, 76)( 67, 73)( 68, 74)( 69, 80)( 70, 79)( 71, 78)
( 72, 77)( 81, 91)( 82, 92)( 83, 89)( 84, 90)( 85, 96)( 86, 95)( 87, 94)
( 88, 93)( 97,107)( 98,108)( 99,105)(100,106)(101,112)(102,111)(103,110)
(104,109)(113,123)(114,124)(115,121)(116,122)(117,128)(118,127)(119,126)
(120,125)(129,139)(130,140)(131,137)(132,138)(133,144)(134,143)(135,142)
(136,141)(145,155)(146,156)(147,153)(148,154)(149,160)(150,159)(151,158)
(152,157);
poly := sub<Sym(160)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1,
s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s2*s1*s0*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope