include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,12,10}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,12,10}*1920d
if this polytope has a name.
Group : SmallGroup(1920,240507)
Rank : 4
Schlafli Type : {4,12,10}
Number of vertices, edges, etc : 4, 48, 120, 20
Order of s0s1s2s3 : 4
Order of s0s1s2s3s2s1 : 2
Special Properties :
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,6,10}*960b, {2,12,10}*960a
4-fold quotients : {4,6,5}*480a, {2,6,10}*480b
8-fold quotients : {2,6,5}*240a
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 6,10)( 7,11)( 8,12)( 9,13)(14,18)(15,19)(16,20)(17,21)(22,26)(23,27)
(24,28)(25,29)(30,34)(31,35)(32,36)(33,37);;
s1 := ( 4, 5)( 6,22)( 7,23)( 8,24)( 9,25)(10,27)(11,26)(12,29)(13,28)(14,32)
(15,33)(16,30)(17,31)(18,37)(19,36)(20,35)(21,34);;
s2 := ( 1, 2)( 3, 4)( 6,14)( 7,15)( 8,16)( 9,17)(10,18)(11,19)(12,20)(13,21)
(22,30)(23,31)(24,32)(25,33)(26,34)(27,35)(28,36)(29,37);;
s3 := (2,3)(4,5);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1, s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2,
s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2,
s1*s2*s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(37)!( 6,10)( 7,11)( 8,12)( 9,13)(14,18)(15,19)(16,20)(17,21)(22,26)
(23,27)(24,28)(25,29)(30,34)(31,35)(32,36)(33,37);
s1 := Sym(37)!( 4, 5)( 6,22)( 7,23)( 8,24)( 9,25)(10,27)(11,26)(12,29)(13,28)
(14,32)(15,33)(16,30)(17,31)(18,37)(19,36)(20,35)(21,34);
s2 := Sym(37)!( 1, 2)( 3, 4)( 6,14)( 7,15)( 8,16)( 9,17)(10,18)(11,19)(12,20)
(13,21)(22,30)(23,31)(24,32)(25,33)(26,34)(27,35)(28,36)(29,37);
s3 := Sym(37)!(2,3)(4,5);
poly := sub<Sym(37)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s0*s1*s2*s1,
s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2,
s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2,
s1*s2*s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s3 >;
References : None.
to this polytope