include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,6,5}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,6,5}*240a
if this polytope has a name.
Group : SmallGroup(240,189)
Rank : 4
Schlafli Type : {2,6,5}
Number of vertices, edges, etc : 2, 12, 30, 10
Order of s0s1s2s3 : 4
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,6,5,2} of size 480
Vertex Figure Of :
{2,2,6,5} of size 480
{3,2,6,5} of size 720
{4,2,6,5} of size 960
{5,2,6,5} of size 1200
{6,2,6,5} of size 1440
{7,2,6,5} of size 1680
{8,2,6,5} of size 1920
Quotients (Maximal Quotients in Boldface) :
No Regular Quotients.
Covers (Minimal Covers in Boldface) :
2-fold covers : {4,6,5}*480a, {2,6,5}*480a, {2,6,10}*480a, {2,6,10}*480b
3-fold covers : {6,6,5}*720a
4-fold covers : {8,6,5}*960a, {2,6,5}*960, {2,6,10}*960a, {4,6,5}*960a, {4,6,10}*960a, {4,6,10}*960b, {2,12,10}*960a, {2,12,10}*960b, {2,6,10}*960b
5-fold covers : {10,6,5}*1200a
6-fold covers : {12,6,5}*1440a, {6,6,5}*1440a, {6,6,10}*1440a, {6,6,10}*1440b, {2,6,10}*1440a, {2,6,15}*1440a, {2,6,15}*1440b
7-fold covers : {14,6,5}*1680a
8-fold covers : {16,6,5}*1920a, {4,12,10}*1920d, {4,12,10}*1920e, {8,6,5}*1920a, {8,6,10}*1920c, {8,6,10}*1920d, {2,24,10}*1920a, {2,24,10}*1920b, {4,6,10}*1920c, {2,12,10}*1920b, {2,6,20}*1920b, {4,6,5}*1920, {4,6,10}*1920e, {2,6,10}*1920a, {2,12,10}*1920d, {2,6,20}*1920d
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (6,7);;
s2 := (3,4)(5,6);;
s3 := (4,5)(6,7);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s3*s2*s3*s2*s1*s3*s2*s1*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(7)!(1,2);
s1 := Sym(7)!(6,7);
s2 := Sym(7)!(3,4)(5,6);
s3 := Sym(7)!(4,5)(6,7);
poly := sub<Sym(7)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s3*s2*s3*s2*s1*s3*s2*s1*s2*s3 >;
to this polytope