include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,6,10}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,6,10}*480b
if this polytope has a name.
Group : SmallGroup(480,1186)
Rank : 4
Schlafli Type : {2,6,10}
Number of vertices, edges, etc : 2, 12, 60, 20
Order of s0s1s2s3 : 4
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,6,10,2} of size 960
Vertex Figure Of :
{2,2,6,10} of size 960
{3,2,6,10} of size 1440
{4,2,6,10} of size 1920
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,6,5}*240a
Covers (Minimal Covers in Boldface) :
2-fold covers : {4,6,10}*960b, {2,12,10}*960a, {2,12,10}*960b, {2,6,10}*960b
3-fold covers : {6,6,10}*1440b, {2,6,10}*1440a
4-fold covers : {4,12,10}*1920d, {4,12,10}*1920e, {8,6,10}*1920d, {2,24,10}*1920a, {2,24,10}*1920b, {4,6,10}*1920c, {2,12,10}*1920b, {2,6,20}*1920b, {2,6,10}*1920a, {2,12,10}*1920d, {2,6,20}*1920d
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (6,7);;
s2 := (3,4)(5,6)(8,9);;
s3 := (4,5)(6,7);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s1*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(9)!(1,2);
s1 := Sym(9)!(6,7);
s2 := Sym(9)!(3,4)(5,6)(8,9);
s3 := Sym(9)!(4,5)(6,7);
poly := sub<Sym(9)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s1*s2*s3 >;
to this polytope