Polytope of Type {12,10}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,10}*1920b
if this polytope has a name.
Group : SmallGroup(1920,240798)
Rank : 3
Schlafli Type : {12,10}
Number of vertices, edges, etc : 96, 480, 80
Order of s0s1s2 : 8
Order of s0s1s2s1 : 8
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {6,10}*960a, {12,10}*960a, {12,10}*960b
   4-fold quotients : {6,5}*480, {6,10}*480a, {12,10}*480a, {12,10}*480b, {6,10}*480b
   8-fold quotients : {6,5}*240a, {6,10}*240a, {6,10}*240b
   16-fold quotients : {6,5}*120a
   120-fold quotients : {4,2}*16
   240-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 3)( 2, 4)( 5,25)( 6,26)( 7,17)( 8,18)( 9,22)(10,21)(11,13)(12,14)
(15,29)(16,30)(19,36)(20,35)(23,34)(24,33)(27,39)(28,40)(31,32)(41,44)(42,43)
(45,47)(46,48)(49,70)(50,69)(51,62)(52,61)(53,65)(54,66)(55,58)(56,57)(59,74)
(60,73)(63,79)(64,80)(67,77)(68,78)(71,84)(72,83)(81,82)(85,87)(86,88);;
s1 := ( 3, 4)( 7,36)( 8,35)( 9,40)(10,39)(13,31)(14,32)(15,16)(17,23)(18,24)
(19,41)(20,42)(21,44)(22,43)(25,38)(26,37)(27,34)(28,33)(29,30)(47,48)(51,80)
(52,79)(53,84)(54,83)(57,75)(58,76)(59,60)(61,67)(62,68)(63,85)(64,86)(65,88)
(66,87)(69,82)(70,81)(71,78)(72,77)(73,74);;
s2 := ( 1,45)( 2,46)( 3,47)( 4,48)( 5,77)( 6,78)( 7,73)( 8,74)( 9,65)(10,66)
(11,64)(12,63)(13,80)(14,79)(15,61)(16,62)(17,60)(18,59)(19,55)(20,56)(21,54)
(22,53)(23,70)(24,69)(25,67)(26,68)(27,88)(28,87)(29,52)(30,51)(31,81)(32,82)
(33,50)(34,49)(35,57)(36,58)(37,76)(38,75)(39,86)(40,85)(41,83)(42,84)(43,71)
(44,72);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s2*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(88)!( 1, 3)( 2, 4)( 5,25)( 6,26)( 7,17)( 8,18)( 9,22)(10,21)(11,13)
(12,14)(15,29)(16,30)(19,36)(20,35)(23,34)(24,33)(27,39)(28,40)(31,32)(41,44)
(42,43)(45,47)(46,48)(49,70)(50,69)(51,62)(52,61)(53,65)(54,66)(55,58)(56,57)
(59,74)(60,73)(63,79)(64,80)(67,77)(68,78)(71,84)(72,83)(81,82)(85,87)(86,88);
s1 := Sym(88)!( 3, 4)( 7,36)( 8,35)( 9,40)(10,39)(13,31)(14,32)(15,16)(17,23)
(18,24)(19,41)(20,42)(21,44)(22,43)(25,38)(26,37)(27,34)(28,33)(29,30)(47,48)
(51,80)(52,79)(53,84)(54,83)(57,75)(58,76)(59,60)(61,67)(62,68)(63,85)(64,86)
(65,88)(66,87)(69,82)(70,81)(71,78)(72,77)(73,74);
s2 := Sym(88)!( 1,45)( 2,46)( 3,47)( 4,48)( 5,77)( 6,78)( 7,73)( 8,74)( 9,65)
(10,66)(11,64)(12,63)(13,80)(14,79)(15,61)(16,62)(17,60)(18,59)(19,55)(20,56)
(21,54)(22,53)(23,70)(24,69)(25,67)(26,68)(27,88)(28,87)(29,52)(30,51)(31,81)
(32,82)(33,50)(34,49)(35,57)(36,58)(37,76)(38,75)(39,86)(40,85)(41,83)(42,84)
(43,71)(44,72);
poly := sub<Sym(88)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s2*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope