Polytope of Type {12,10}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,10}*960b
if this polytope has a name.
Group : SmallGroup(960,10882)
Rank : 3
Schlafli Type : {12,10}
Number of vertices, edges, etc : 48, 240, 40
Order of s0s1s2 : 4
Order of s0s1s2s1 : 4
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   {12,10,2} of size 1920
Vertex Figure Of :
   {2,12,10} of size 1920
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {12,10}*480a, {12,10}*480b, {6,10}*480b
   4-fold quotients : {6,5}*240a, {6,10}*240a, {6,10}*240b
   8-fold quotients : {6,5}*120a
   60-fold quotients : {4,2}*16
   120-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   2-fold covers : {12,20}*1920f, {24,10}*1920c, {12,10}*1920b, {12,20}*1920h, {24,10}*1920e
Permutation Representation (GAP) :
s0 := (3,4)(7,8);;
s1 := (1,3)(2,4)(5,6)(8,9);;
s2 := ( 6, 9)( 7, 8)(10,11);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s0*s1*s2*s1*s2*s1*s2*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(11)!(3,4)(7,8);
s1 := Sym(11)!(1,3)(2,4)(5,6)(8,9);
s2 := Sym(11)!( 6, 9)( 7, 8)(10,11);
poly := sub<Sym(11)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s0*s1*s2*s1*s2*s1*s2*s1*s0*s1 >; 
 
References : None.
to this polytope