include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {12,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,6}*1920a
if this polytope has a name.
Group : SmallGroup(1920,240800)
Rank : 3
Schlafli Type : {12,6}
Number of vertices, edges, etc : 160, 480, 80
Order of s0s1s2 : 12
Order of s0s1s2s1 : 20
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Self-Petrie
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {6,6}*960, {12,6}*960a, {12,6}*960b
4-fold quotients : {12,6}*480a, {12,6}*480b, {6,6}*480
8-fold quotients : {6,6}*240a, {6,6}*240b, {6,6}*240c
16-fold quotients : {6,6}*120
120-fold quotients : {4,2}*16
240-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 4)( 7,32)( 8,31)( 9,36)(10,35)(13,39)(14,40)(15,34)(16,33)(17,37)
(18,38)(19,29)(20,30)(21,23)(22,24)(25,43)(26,44)(27,28)(41,42)(47,48)(49,50)
(51,75)(52,76)(53,79)(54,80)(55,56)(57,84)(58,83)(59,77)(60,78)(61,82)(62,81)
(63,74)(64,73)(65,68)(66,67)(69,88)(70,87);;
s1 := ( 1, 3)( 2, 4)( 5,11)( 6,12)( 7,18)( 8,17)( 9,25)(10,26)(13,21)(14,22)
(15,27)(16,28)(19,20)(23,31)(24,32)(29,42)(30,41)(35,37)(36,38)(39,44)(40,43)
(45,47)(46,48)(49,56)(50,55)(51,61)(52,62)(53,70)(54,69)(57,66)(58,65)(59,72)
(60,71)(67,76)(68,75)(73,85)(74,86)(77,78)(79,82)(80,81)(83,87)(84,88);;
s2 := ( 1,45)( 2,46)( 3,47)( 4,48)( 5,71)( 6,72)( 7,75)( 8,76)( 9,64)(10,63)
(11,85)(12,86)(13,69)(14,70)(15,67)(16,68)(17,82)(18,81)(19,53)(20,54)(21,78)
(22,77)(23,60)(24,59)(25,58)(26,57)(27,50)(28,49)(29,79)(30,80)(31,52)(32,51)
(33,65)(34,66)(35,74)(36,73)(37,61)(38,62)(39,88)(40,87)(41,56)(42,55)(43,83)
(44,84);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1,
s2*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(88)!( 3, 4)( 7,32)( 8,31)( 9,36)(10,35)(13,39)(14,40)(15,34)(16,33)
(17,37)(18,38)(19,29)(20,30)(21,23)(22,24)(25,43)(26,44)(27,28)(41,42)(47,48)
(49,50)(51,75)(52,76)(53,79)(54,80)(55,56)(57,84)(58,83)(59,77)(60,78)(61,82)
(62,81)(63,74)(64,73)(65,68)(66,67)(69,88)(70,87);
s1 := Sym(88)!( 1, 3)( 2, 4)( 5,11)( 6,12)( 7,18)( 8,17)( 9,25)(10,26)(13,21)
(14,22)(15,27)(16,28)(19,20)(23,31)(24,32)(29,42)(30,41)(35,37)(36,38)(39,44)
(40,43)(45,47)(46,48)(49,56)(50,55)(51,61)(52,62)(53,70)(54,69)(57,66)(58,65)
(59,72)(60,71)(67,76)(68,75)(73,85)(74,86)(77,78)(79,82)(80,81)(83,87)(84,88);
s2 := Sym(88)!( 1,45)( 2,46)( 3,47)( 4,48)( 5,71)( 6,72)( 7,75)( 8,76)( 9,64)
(10,63)(11,85)(12,86)(13,69)(14,70)(15,67)(16,68)(17,82)(18,81)(19,53)(20,54)
(21,78)(22,77)(23,60)(24,59)(25,58)(26,57)(27,50)(28,49)(29,79)(30,80)(31,52)
(32,51)(33,65)(34,66)(35,74)(36,73)(37,61)(38,62)(39,88)(40,87)(41,56)(42,55)
(43,83)(44,84);
poly := sub<Sym(88)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1,
s2*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope