Polytope of Type {2,3,12,3,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,3,12,3,2}*1920
if this polytope has a name.
Group : SmallGroup(1920,240973)
Rank : 6
Schlafli Type : {2,3,12,3,2}
Number of vertices, edges, etc : 2, 5, 40, 40, 5, 2
Order of s0s1s2s3s4s5 : 10
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
   Self-Dual
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,3,6,3,2}*960
   4-fold quotients : {2,3,3,3,2}*480
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 3,13)( 4,26)( 5,11)( 6,12)( 7,14)( 8,27)( 9,42)(10,41)(15,21)(16,38)
(17,29)(18,30)(19,20)(22,24)(28,37)(31,40)(32,39)(33,34)(35,36);;
s2 := ( 3, 4)( 5,17)( 6,18)( 7, 8)( 9,11)(10,12)(13,33)(14,36)(16,19)(20,22)
(21,25)(23,37)(24,38)(26,34)(27,35)(29,42)(30,41)(31,40)(32,39);;
s3 := ( 4, 7)( 5,11)( 6,12)( 9,16)(10,15)(14,26)(17,28)(18,19)(20,30)(21,41)
(23,25)(29,37)(31,35)(32,34)(33,39)(36,40)(38,42);;
s4 := ( 3,42)( 4,29)( 5,34)( 6,35)( 7,41)( 8,30)( 9,13)(10,14)(11,33)(12,36)
(15,28)(17,26)(18,27)(21,37)(23,25)(31,40)(32,39);;
s5 := (43,44);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  s5 := F.6;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5, 
s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s0*s5*s0*s5, s1*s5*s1*s5, 
s2*s5*s2*s5, s3*s5*s3*s5, s4*s5*s4*s5, 
s1*s2*s1*s2*s1*s2, s3*s4*s3*s4*s3*s4, 
s3*s1*s2*s3*s2*s3*s2*s3*s1*s2*s3*s2*s3*s2, 
s4*s2*s3*s2*s3*s2*s3*s4*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(44)!(1,2);
s1 := Sym(44)!( 3,13)( 4,26)( 5,11)( 6,12)( 7,14)( 8,27)( 9,42)(10,41)(15,21)
(16,38)(17,29)(18,30)(19,20)(22,24)(28,37)(31,40)(32,39)(33,34)(35,36);
s2 := Sym(44)!( 3, 4)( 5,17)( 6,18)( 7, 8)( 9,11)(10,12)(13,33)(14,36)(16,19)
(20,22)(21,25)(23,37)(24,38)(26,34)(27,35)(29,42)(30,41)(31,40)(32,39);
s3 := Sym(44)!( 4, 7)( 5,11)( 6,12)( 9,16)(10,15)(14,26)(17,28)(18,19)(20,30)
(21,41)(23,25)(29,37)(31,35)(32,34)(33,39)(36,40)(38,42);
s4 := Sym(44)!( 3,42)( 4,29)( 5,34)( 6,35)( 7,41)( 8,30)( 9,13)(10,14)(11,33)
(12,36)(15,28)(17,26)(18,27)(21,37)(23,25)(31,40)(32,39);
s5 := Sym(44)!(43,44);
poly := sub<Sym(44)|s0,s1,s2,s3,s4,s5>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5, 
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5, 
s4*s5*s4*s5, s1*s2*s1*s2*s1*s2, s3*s4*s3*s4*s3*s4, 
s3*s1*s2*s3*s2*s3*s2*s3*s1*s2*s3*s2*s3*s2, 
s4*s2*s3*s2*s3*s2*s3*s4*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope