Polytope of Type {3,12,3,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,12,3,2}*960
if this polytope has a name.
Group : SmallGroup(960,10869)
Rank : 5
Schlafli Type : {3,12,3,2}
Number of vertices, edges, etc : 5, 40, 40, 5, 2
Order of s0s1s2s3s4 : 10
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {3,12,3,2,2} of size 1920
Vertex Figure Of :
   {2,3,12,3,2} of size 1920
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {3,6,3,2}*480
   4-fold quotients : {3,3,3,2}*240
Covers (Minimal Covers in Boldface) :
   2-fold covers : {3,12,6,2}*1920, {6,12,3,2}*1920
Permutation Representation (GAP) :
s0 := ( 1,11)( 2,24)( 3, 9)( 4,10)( 5,12)( 6,25)( 7,40)( 8,39)(13,19)(14,36)
(15,27)(16,28)(17,18)(20,22)(26,35)(29,38)(30,37)(31,32)(33,34);;
s1 := ( 1, 2)( 3,15)( 4,16)( 5, 6)( 7, 9)( 8,10)(11,31)(12,34)(14,17)(18,20)
(19,23)(21,35)(22,36)(24,32)(25,33)(27,40)(28,39)(29,38)(30,37);;
s2 := ( 2, 5)( 3, 9)( 4,10)( 7,14)( 8,13)(12,24)(15,26)(16,17)(18,28)(19,39)
(21,23)(27,35)(29,33)(30,32)(31,37)(34,38)(36,40);;
s3 := ( 1,40)( 2,27)( 3,32)( 4,33)( 5,39)( 6,28)( 7,11)( 8,12)( 9,31)(10,34)
(13,26)(15,24)(16,25)(19,35)(21,23)(29,38)(30,37);;
s4 := (41,42);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3, 
s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1, 
s3*s1*s2*s1*s2*s1*s2*s3*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(42)!( 1,11)( 2,24)( 3, 9)( 4,10)( 5,12)( 6,25)( 7,40)( 8,39)(13,19)
(14,36)(15,27)(16,28)(17,18)(20,22)(26,35)(29,38)(30,37)(31,32)(33,34);
s1 := Sym(42)!( 1, 2)( 3,15)( 4,16)( 5, 6)( 7, 9)( 8,10)(11,31)(12,34)(14,17)
(18,20)(19,23)(21,35)(22,36)(24,32)(25,33)(27,40)(28,39)(29,38)(30,37);
s2 := Sym(42)!( 2, 5)( 3, 9)( 4,10)( 7,14)( 8,13)(12,24)(15,26)(16,17)(18,28)
(19,39)(21,23)(27,35)(29,33)(30,32)(31,37)(34,38)(36,40);
s3 := Sym(42)!( 1,40)( 2,27)( 3,32)( 4,33)( 5,39)( 6,28)( 7,11)( 8,12)( 9,31)
(10,34)(13,26)(15,24)(16,25)(19,35)(21,23)(29,38)(30,37);
s4 := Sym(42)!(41,42);
poly := sub<Sym(42)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s3*s4*s3*s4, s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3, s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1, 
s3*s1*s2*s1*s2*s1*s2*s3*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope