include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,20,10}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,20,10}*1920b
if this polytope has a name.
Group : SmallGroup(1920,240988)
Rank : 4
Schlafli Type : {2,20,10}
Number of vertices, edges, etc : 2, 48, 240, 24
Order of s0s1s2s3 : 12
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,20,5}*960, {2,10,10}*960
4-fold quotients : {2,5,10}*480, {2,10,5}*480, {2,10,10}*480a, {2,10,10}*480b, {2,10,10}*480c, {2,10,10}*480d
8-fold quotients : {2,5,5}*240, {2,5,10}*240a, {2,5,10}*240b, {2,10,5}*240a, {2,10,5}*240b
16-fold quotients : {2,5,5}*120
120-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4,47)( 5,43)( 6,19)( 7,21)( 9,32)(10,50)(11,38)(12,49)(13,25)(14,36)
(15,24)(16,42)(17,41)(22,28)(23,31)(26,40)(27,39)(29,48)(30,33)(37,44);;
s2 := ( 3, 6)( 4,15)( 5,10)( 7,18)( 8,19)( 9,45)(11,32)(12,37)(13,29)(14,24)
(16,26)(17,27)(20,21)(22,48)(23,30)(25,35)(28,31)(33,42)(34,41)(36,44)(38,40)
(39,49)(43,46)(47,50);;
s3 := ( 3,35)( 4,10)( 5,42)( 6,33)( 7,36)( 8,45)( 9,37)(11,26)(12,27)(13,24)
(14,21)(15,25)(16,43)(17,23)(18,46)(19,30)(20,34)(22,48)(28,29)(31,41)(32,44)
(38,40)(39,49)(47,50)(51,52);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s3*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s3*s1*s2*s1*s2,
s1*s2*s3*s2*s3*s2*s3*s2*s3*s2*s1*s2*s3*s2*s3*s2*s3*s2*s3*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s3*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s3*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(52)!(1,2);
s1 := Sym(52)!( 4,47)( 5,43)( 6,19)( 7,21)( 9,32)(10,50)(11,38)(12,49)(13,25)
(14,36)(15,24)(16,42)(17,41)(22,28)(23,31)(26,40)(27,39)(29,48)(30,33)(37,44);
s2 := Sym(52)!( 3, 6)( 4,15)( 5,10)( 7,18)( 8,19)( 9,45)(11,32)(12,37)(13,29)
(14,24)(16,26)(17,27)(20,21)(22,48)(23,30)(25,35)(28,31)(33,42)(34,41)(36,44)
(38,40)(39,49)(43,46)(47,50);
s3 := Sym(52)!( 3,35)( 4,10)( 5,42)( 6,33)( 7,36)( 8,45)( 9,37)(11,26)(12,27)
(13,24)(14,21)(15,25)(16,43)(17,23)(18,46)(19,30)(20,34)(22,48)(28,29)(31,41)
(32,44)(38,40)(39,49)(47,50)(51,52);
poly := sub<Sym(52)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s3*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s3*s1*s2*s1*s2,
s1*s2*s3*s2*s3*s2*s3*s2*s3*s2*s1*s2*s3*s2*s3*s2*s3*s2*s3*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s3*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s3*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope