Polytope of Type {12,40}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,40}*1920b
if this polytope has a name.
Group : SmallGroup(1920,42353)
Rank : 3
Schlafli Type : {12,40}
Number of vertices, edges, etc : 24, 480, 80
Order of s0s1s2 : 60
Order of s0s1s2s1 : 4
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {12,20}*960a
   3-fold quotients : {4,40}*640b
   4-fold quotients : {12,20}*480
   5-fold quotients : {12,8}*384b
   6-fold quotients : {4,20}*320
   8-fold quotients : {12,10}*240, {6,20}*240a
   10-fold quotients : {12,4}*192a
   12-fold quotients : {4,20}*160
   15-fold quotients : {4,8}*128b
   16-fold quotients : {6,10}*120
   20-fold quotients : {12,4}*96a
   24-fold quotients : {2,20}*80, {4,10}*80
   30-fold quotients : {4,4}*64
   40-fold quotients : {12,2}*48, {6,4}*48a
   48-fold quotients : {2,10}*40
   60-fold quotients : {4,4}*32
   80-fold quotients : {6,2}*24
   96-fold quotients : {2,5}*20
   120-fold quotients : {2,4}*16, {4,2}*16
   160-fold quotients : {3,2}*12
   240-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1,121)(  2,122)(  3,123)(  4,124)(  5,125)(  6,131)(  7,132)(  8,133)
(  9,134)( 10,135)( 11,126)( 12,127)( 13,128)( 14,129)( 15,130)( 16,136)
( 17,137)( 18,138)( 19,139)( 20,140)( 21,146)( 22,147)( 23,148)( 24,149)
( 25,150)( 26,141)( 27,142)( 28,143)( 29,144)( 30,145)( 31,151)( 32,152)
( 33,153)( 34,154)( 35,155)( 36,161)( 37,162)( 38,163)( 39,164)( 40,165)
( 41,156)( 42,157)( 43,158)( 44,159)( 45,160)( 46,166)( 47,167)( 48,168)
( 49,169)( 50,170)( 51,176)( 52,177)( 53,178)( 54,179)( 55,180)( 56,171)
( 57,172)( 58,173)( 59,174)( 60,175)( 61,181)( 62,182)( 63,183)( 64,184)
( 65,185)( 66,191)( 67,192)( 68,193)( 69,194)( 70,195)( 71,186)( 72,187)
( 73,188)( 74,189)( 75,190)( 76,196)( 77,197)( 78,198)( 79,199)( 80,200)
( 81,206)( 82,207)( 83,208)( 84,209)( 85,210)( 86,201)( 87,202)( 88,203)
( 89,204)( 90,205)( 91,211)( 92,212)( 93,213)( 94,214)( 95,215)( 96,221)
( 97,222)( 98,223)( 99,224)(100,225)(101,216)(102,217)(103,218)(104,219)
(105,220)(106,226)(107,227)(108,228)(109,229)(110,230)(111,236)(112,237)
(113,238)(114,239)(115,240)(116,231)(117,232)(118,233)(119,234)(120,235);;
s1 := (  1,  6)(  2, 10)(  3,  9)(  4,  8)(  5,  7)( 12, 15)( 13, 14)( 16, 21)
( 17, 25)( 18, 24)( 19, 23)( 20, 22)( 27, 30)( 28, 29)( 31, 51)( 32, 55)
( 33, 54)( 34, 53)( 35, 52)( 36, 46)( 37, 50)( 38, 49)( 39, 48)( 40, 47)
( 41, 56)( 42, 60)( 43, 59)( 44, 58)( 45, 57)( 61, 66)( 62, 70)( 63, 69)
( 64, 68)( 65, 67)( 72, 75)( 73, 74)( 76, 81)( 77, 85)( 78, 84)( 79, 83)
( 80, 82)( 87, 90)( 88, 89)( 91,111)( 92,115)( 93,114)( 94,113)( 95,112)
( 96,106)( 97,110)( 98,109)( 99,108)(100,107)(101,116)(102,120)(103,119)
(104,118)(105,117)(121,186)(122,190)(123,189)(124,188)(125,187)(126,181)
(127,185)(128,184)(129,183)(130,182)(131,191)(132,195)(133,194)(134,193)
(135,192)(136,201)(137,205)(138,204)(139,203)(140,202)(141,196)(142,200)
(143,199)(144,198)(145,197)(146,206)(147,210)(148,209)(149,208)(150,207)
(151,231)(152,235)(153,234)(154,233)(155,232)(156,226)(157,230)(158,229)
(159,228)(160,227)(161,236)(162,240)(163,239)(164,238)(165,237)(166,216)
(167,220)(168,219)(169,218)(170,217)(171,211)(172,215)(173,214)(174,213)
(175,212)(176,221)(177,225)(178,224)(179,223)(180,222);;
s2 := (  1,122)(  2,121)(  3,125)(  4,124)(  5,123)(  6,127)(  7,126)(  8,130)
(  9,129)( 10,128)( 11,132)( 12,131)( 13,135)( 14,134)( 15,133)( 16,137)
( 17,136)( 18,140)( 19,139)( 20,138)( 21,142)( 22,141)( 23,145)( 24,144)
( 25,143)( 26,147)( 27,146)( 28,150)( 29,149)( 30,148)( 31,152)( 32,151)
( 33,155)( 34,154)( 35,153)( 36,157)( 37,156)( 38,160)( 39,159)( 40,158)
( 41,162)( 42,161)( 43,165)( 44,164)( 45,163)( 46,167)( 47,166)( 48,170)
( 49,169)( 50,168)( 51,172)( 52,171)( 53,175)( 54,174)( 55,173)( 56,177)
( 57,176)( 58,180)( 59,179)( 60,178)( 61,227)( 62,226)( 63,230)( 64,229)
( 65,228)( 66,232)( 67,231)( 68,235)( 69,234)( 70,233)( 71,237)( 72,236)
( 73,240)( 74,239)( 75,238)( 76,212)( 77,211)( 78,215)( 79,214)( 80,213)
( 81,217)( 82,216)( 83,220)( 84,219)( 85,218)( 86,222)( 87,221)( 88,225)
( 89,224)( 90,223)( 91,197)( 92,196)( 93,200)( 94,199)( 95,198)( 96,202)
( 97,201)( 98,205)( 99,204)(100,203)(101,207)(102,206)(103,210)(104,209)
(105,208)(106,182)(107,181)(108,185)(109,184)(110,183)(111,187)(112,186)
(113,190)(114,189)(115,188)(116,192)(117,191)(118,195)(119,194)(120,193);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(240)!(  1,121)(  2,122)(  3,123)(  4,124)(  5,125)(  6,131)(  7,132)
(  8,133)(  9,134)( 10,135)( 11,126)( 12,127)( 13,128)( 14,129)( 15,130)
( 16,136)( 17,137)( 18,138)( 19,139)( 20,140)( 21,146)( 22,147)( 23,148)
( 24,149)( 25,150)( 26,141)( 27,142)( 28,143)( 29,144)( 30,145)( 31,151)
( 32,152)( 33,153)( 34,154)( 35,155)( 36,161)( 37,162)( 38,163)( 39,164)
( 40,165)( 41,156)( 42,157)( 43,158)( 44,159)( 45,160)( 46,166)( 47,167)
( 48,168)( 49,169)( 50,170)( 51,176)( 52,177)( 53,178)( 54,179)( 55,180)
( 56,171)( 57,172)( 58,173)( 59,174)( 60,175)( 61,181)( 62,182)( 63,183)
( 64,184)( 65,185)( 66,191)( 67,192)( 68,193)( 69,194)( 70,195)( 71,186)
( 72,187)( 73,188)( 74,189)( 75,190)( 76,196)( 77,197)( 78,198)( 79,199)
( 80,200)( 81,206)( 82,207)( 83,208)( 84,209)( 85,210)( 86,201)( 87,202)
( 88,203)( 89,204)( 90,205)( 91,211)( 92,212)( 93,213)( 94,214)( 95,215)
( 96,221)( 97,222)( 98,223)( 99,224)(100,225)(101,216)(102,217)(103,218)
(104,219)(105,220)(106,226)(107,227)(108,228)(109,229)(110,230)(111,236)
(112,237)(113,238)(114,239)(115,240)(116,231)(117,232)(118,233)(119,234)
(120,235);
s1 := Sym(240)!(  1,  6)(  2, 10)(  3,  9)(  4,  8)(  5,  7)( 12, 15)( 13, 14)
( 16, 21)( 17, 25)( 18, 24)( 19, 23)( 20, 22)( 27, 30)( 28, 29)( 31, 51)
( 32, 55)( 33, 54)( 34, 53)( 35, 52)( 36, 46)( 37, 50)( 38, 49)( 39, 48)
( 40, 47)( 41, 56)( 42, 60)( 43, 59)( 44, 58)( 45, 57)( 61, 66)( 62, 70)
( 63, 69)( 64, 68)( 65, 67)( 72, 75)( 73, 74)( 76, 81)( 77, 85)( 78, 84)
( 79, 83)( 80, 82)( 87, 90)( 88, 89)( 91,111)( 92,115)( 93,114)( 94,113)
( 95,112)( 96,106)( 97,110)( 98,109)( 99,108)(100,107)(101,116)(102,120)
(103,119)(104,118)(105,117)(121,186)(122,190)(123,189)(124,188)(125,187)
(126,181)(127,185)(128,184)(129,183)(130,182)(131,191)(132,195)(133,194)
(134,193)(135,192)(136,201)(137,205)(138,204)(139,203)(140,202)(141,196)
(142,200)(143,199)(144,198)(145,197)(146,206)(147,210)(148,209)(149,208)
(150,207)(151,231)(152,235)(153,234)(154,233)(155,232)(156,226)(157,230)
(158,229)(159,228)(160,227)(161,236)(162,240)(163,239)(164,238)(165,237)
(166,216)(167,220)(168,219)(169,218)(170,217)(171,211)(172,215)(173,214)
(174,213)(175,212)(176,221)(177,225)(178,224)(179,223)(180,222);
s2 := Sym(240)!(  1,122)(  2,121)(  3,125)(  4,124)(  5,123)(  6,127)(  7,126)
(  8,130)(  9,129)( 10,128)( 11,132)( 12,131)( 13,135)( 14,134)( 15,133)
( 16,137)( 17,136)( 18,140)( 19,139)( 20,138)( 21,142)( 22,141)( 23,145)
( 24,144)( 25,143)( 26,147)( 27,146)( 28,150)( 29,149)( 30,148)( 31,152)
( 32,151)( 33,155)( 34,154)( 35,153)( 36,157)( 37,156)( 38,160)( 39,159)
( 40,158)( 41,162)( 42,161)( 43,165)( 44,164)( 45,163)( 46,167)( 47,166)
( 48,170)( 49,169)( 50,168)( 51,172)( 52,171)( 53,175)( 54,174)( 55,173)
( 56,177)( 57,176)( 58,180)( 59,179)( 60,178)( 61,227)( 62,226)( 63,230)
( 64,229)( 65,228)( 66,232)( 67,231)( 68,235)( 69,234)( 70,233)( 71,237)
( 72,236)( 73,240)( 74,239)( 75,238)( 76,212)( 77,211)( 78,215)( 79,214)
( 80,213)( 81,217)( 82,216)( 83,220)( 84,219)( 85,218)( 86,222)( 87,221)
( 88,225)( 89,224)( 90,223)( 91,197)( 92,196)( 93,200)( 94,199)( 95,198)
( 96,202)( 97,201)( 98,205)( 99,204)(100,203)(101,207)(102,206)(103,210)
(104,209)(105,208)(106,182)(107,181)(108,185)(109,184)(110,183)(111,187)
(112,186)(113,190)(114,189)(115,188)(116,192)(117,191)(118,195)(119,194)
(120,193);
poly := sub<Sym(240)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2 >; 
 
References : None.
to this polytope