Polytope of Type {2,480}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,480}*1920
if this polytope has a name.
Group : SmallGroup(1920,44843)
Rank : 3
Schlafli Type : {2,480}
Number of vertices, edges, etc : 2, 480, 480
Order of s0s1s2 : 480
Order of s0s1s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,240}*960
   3-fold quotients : {2,160}*640
   4-fold quotients : {2,120}*480
   5-fold quotients : {2,96}*384
   6-fold quotients : {2,80}*320
   8-fold quotients : {2,60}*240
   10-fold quotients : {2,48}*192
   12-fold quotients : {2,40}*160
   15-fold quotients : {2,32}*128
   16-fold quotients : {2,30}*120
   20-fold quotients : {2,24}*96
   24-fold quotients : {2,20}*80
   30-fold quotients : {2,16}*64
   32-fold quotients : {2,15}*60
   40-fold quotients : {2,12}*48
   48-fold quotients : {2,10}*40
   60-fold quotients : {2,8}*32
   80-fold quotients : {2,6}*24
   96-fold quotients : {2,5}*20
   120-fold quotients : {2,4}*16
   160-fold quotients : {2,3}*12
   240-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  4,  7)(  5,  6)(  8, 13)(  9, 17)( 10, 16)( 11, 15)( 12, 14)( 19, 22)
( 20, 21)( 23, 28)( 24, 32)( 25, 31)( 26, 30)( 27, 29)( 33, 48)( 34, 52)
( 35, 51)( 36, 50)( 37, 49)( 38, 58)( 39, 62)( 40, 61)( 41, 60)( 42, 59)
( 43, 53)( 44, 57)( 45, 56)( 46, 55)( 47, 54)( 63, 93)( 64, 97)( 65, 96)
( 66, 95)( 67, 94)( 68,103)( 69,107)( 70,106)( 71,105)( 72,104)( 73, 98)
( 74,102)( 75,101)( 76,100)( 77, 99)( 78,108)( 79,112)( 80,111)( 81,110)
( 82,109)( 83,118)( 84,122)( 85,121)( 86,120)( 87,119)( 88,113)( 89,117)
( 90,116)( 91,115)( 92,114)(123,183)(124,187)(125,186)(126,185)(127,184)
(128,193)(129,197)(130,196)(131,195)(132,194)(133,188)(134,192)(135,191)
(136,190)(137,189)(138,198)(139,202)(140,201)(141,200)(142,199)(143,208)
(144,212)(145,211)(146,210)(147,209)(148,203)(149,207)(150,206)(151,205)
(152,204)(153,228)(154,232)(155,231)(156,230)(157,229)(158,238)(159,242)
(160,241)(161,240)(162,239)(163,233)(164,237)(165,236)(166,235)(167,234)
(168,213)(169,217)(170,216)(171,215)(172,214)(173,223)(174,227)(175,226)
(176,225)(177,224)(178,218)(179,222)(180,221)(181,220)(182,219)(243,363)
(244,367)(245,366)(246,365)(247,364)(248,373)(249,377)(250,376)(251,375)
(252,374)(253,368)(254,372)(255,371)(256,370)(257,369)(258,378)(259,382)
(260,381)(261,380)(262,379)(263,388)(264,392)(265,391)(266,390)(267,389)
(268,383)(269,387)(270,386)(271,385)(272,384)(273,408)(274,412)(275,411)
(276,410)(277,409)(278,418)(279,422)(280,421)(281,420)(282,419)(283,413)
(284,417)(285,416)(286,415)(287,414)(288,393)(289,397)(290,396)(291,395)
(292,394)(293,403)(294,407)(295,406)(296,405)(297,404)(298,398)(299,402)
(300,401)(301,400)(302,399)(303,453)(304,457)(305,456)(306,455)(307,454)
(308,463)(309,467)(310,466)(311,465)(312,464)(313,458)(314,462)(315,461)
(316,460)(317,459)(318,468)(319,472)(320,471)(321,470)(322,469)(323,478)
(324,482)(325,481)(326,480)(327,479)(328,473)(329,477)(330,476)(331,475)
(332,474)(333,423)(334,427)(335,426)(336,425)(337,424)(338,433)(339,437)
(340,436)(341,435)(342,434)(343,428)(344,432)(345,431)(346,430)(347,429)
(348,438)(349,442)(350,441)(351,440)(352,439)(353,448)(354,452)(355,451)
(356,450)(357,449)(358,443)(359,447)(360,446)(361,445)(362,444);;
s2 := (  3,249)(  4,248)(  5,252)(  6,251)(  7,250)(  8,244)(  9,243)( 10,247)
( 11,246)( 12,245)( 13,254)( 14,253)( 15,257)( 16,256)( 17,255)( 18,264)
( 19,263)( 20,267)( 21,266)( 22,265)( 23,259)( 24,258)( 25,262)( 26,261)
( 27,260)( 28,269)( 29,268)( 30,272)( 31,271)( 32,270)( 33,294)( 34,293)
( 35,297)( 36,296)( 37,295)( 38,289)( 39,288)( 40,292)( 41,291)( 42,290)
( 43,299)( 44,298)( 45,302)( 46,301)( 47,300)( 48,279)( 49,278)( 50,282)
( 51,281)( 52,280)( 53,274)( 54,273)( 55,277)( 56,276)( 57,275)( 58,284)
( 59,283)( 60,287)( 61,286)( 62,285)( 63,339)( 64,338)( 65,342)( 66,341)
( 67,340)( 68,334)( 69,333)( 70,337)( 71,336)( 72,335)( 73,344)( 74,343)
( 75,347)( 76,346)( 77,345)( 78,354)( 79,353)( 80,357)( 81,356)( 82,355)
( 83,349)( 84,348)( 85,352)( 86,351)( 87,350)( 88,359)( 89,358)( 90,362)
( 91,361)( 92,360)( 93,309)( 94,308)( 95,312)( 96,311)( 97,310)( 98,304)
( 99,303)(100,307)(101,306)(102,305)(103,314)(104,313)(105,317)(106,316)
(107,315)(108,324)(109,323)(110,327)(111,326)(112,325)(113,319)(114,318)
(115,322)(116,321)(117,320)(118,329)(119,328)(120,332)(121,331)(122,330)
(123,429)(124,428)(125,432)(126,431)(127,430)(128,424)(129,423)(130,427)
(131,426)(132,425)(133,434)(134,433)(135,437)(136,436)(137,435)(138,444)
(139,443)(140,447)(141,446)(142,445)(143,439)(144,438)(145,442)(146,441)
(147,440)(148,449)(149,448)(150,452)(151,451)(152,450)(153,474)(154,473)
(155,477)(156,476)(157,475)(158,469)(159,468)(160,472)(161,471)(162,470)
(163,479)(164,478)(165,482)(166,481)(167,480)(168,459)(169,458)(170,462)
(171,461)(172,460)(173,454)(174,453)(175,457)(176,456)(177,455)(178,464)
(179,463)(180,467)(181,466)(182,465)(183,369)(184,368)(185,372)(186,371)
(187,370)(188,364)(189,363)(190,367)(191,366)(192,365)(193,374)(194,373)
(195,377)(196,376)(197,375)(198,384)(199,383)(200,387)(201,386)(202,385)
(203,379)(204,378)(205,382)(206,381)(207,380)(208,389)(209,388)(210,392)
(211,391)(212,390)(213,414)(214,413)(215,417)(216,416)(217,415)(218,409)
(219,408)(220,412)(221,411)(222,410)(223,419)(224,418)(225,422)(226,421)
(227,420)(228,399)(229,398)(230,402)(231,401)(232,400)(233,394)(234,393)
(235,397)(236,396)(237,395)(238,404)(239,403)(240,407)(241,406)(242,405);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(482)!(1,2);
s1 := Sym(482)!(  4,  7)(  5,  6)(  8, 13)(  9, 17)( 10, 16)( 11, 15)( 12, 14)
( 19, 22)( 20, 21)( 23, 28)( 24, 32)( 25, 31)( 26, 30)( 27, 29)( 33, 48)
( 34, 52)( 35, 51)( 36, 50)( 37, 49)( 38, 58)( 39, 62)( 40, 61)( 41, 60)
( 42, 59)( 43, 53)( 44, 57)( 45, 56)( 46, 55)( 47, 54)( 63, 93)( 64, 97)
( 65, 96)( 66, 95)( 67, 94)( 68,103)( 69,107)( 70,106)( 71,105)( 72,104)
( 73, 98)( 74,102)( 75,101)( 76,100)( 77, 99)( 78,108)( 79,112)( 80,111)
( 81,110)( 82,109)( 83,118)( 84,122)( 85,121)( 86,120)( 87,119)( 88,113)
( 89,117)( 90,116)( 91,115)( 92,114)(123,183)(124,187)(125,186)(126,185)
(127,184)(128,193)(129,197)(130,196)(131,195)(132,194)(133,188)(134,192)
(135,191)(136,190)(137,189)(138,198)(139,202)(140,201)(141,200)(142,199)
(143,208)(144,212)(145,211)(146,210)(147,209)(148,203)(149,207)(150,206)
(151,205)(152,204)(153,228)(154,232)(155,231)(156,230)(157,229)(158,238)
(159,242)(160,241)(161,240)(162,239)(163,233)(164,237)(165,236)(166,235)
(167,234)(168,213)(169,217)(170,216)(171,215)(172,214)(173,223)(174,227)
(175,226)(176,225)(177,224)(178,218)(179,222)(180,221)(181,220)(182,219)
(243,363)(244,367)(245,366)(246,365)(247,364)(248,373)(249,377)(250,376)
(251,375)(252,374)(253,368)(254,372)(255,371)(256,370)(257,369)(258,378)
(259,382)(260,381)(261,380)(262,379)(263,388)(264,392)(265,391)(266,390)
(267,389)(268,383)(269,387)(270,386)(271,385)(272,384)(273,408)(274,412)
(275,411)(276,410)(277,409)(278,418)(279,422)(280,421)(281,420)(282,419)
(283,413)(284,417)(285,416)(286,415)(287,414)(288,393)(289,397)(290,396)
(291,395)(292,394)(293,403)(294,407)(295,406)(296,405)(297,404)(298,398)
(299,402)(300,401)(301,400)(302,399)(303,453)(304,457)(305,456)(306,455)
(307,454)(308,463)(309,467)(310,466)(311,465)(312,464)(313,458)(314,462)
(315,461)(316,460)(317,459)(318,468)(319,472)(320,471)(321,470)(322,469)
(323,478)(324,482)(325,481)(326,480)(327,479)(328,473)(329,477)(330,476)
(331,475)(332,474)(333,423)(334,427)(335,426)(336,425)(337,424)(338,433)
(339,437)(340,436)(341,435)(342,434)(343,428)(344,432)(345,431)(346,430)
(347,429)(348,438)(349,442)(350,441)(351,440)(352,439)(353,448)(354,452)
(355,451)(356,450)(357,449)(358,443)(359,447)(360,446)(361,445)(362,444);
s2 := Sym(482)!(  3,249)(  4,248)(  5,252)(  6,251)(  7,250)(  8,244)(  9,243)
( 10,247)( 11,246)( 12,245)( 13,254)( 14,253)( 15,257)( 16,256)( 17,255)
( 18,264)( 19,263)( 20,267)( 21,266)( 22,265)( 23,259)( 24,258)( 25,262)
( 26,261)( 27,260)( 28,269)( 29,268)( 30,272)( 31,271)( 32,270)( 33,294)
( 34,293)( 35,297)( 36,296)( 37,295)( 38,289)( 39,288)( 40,292)( 41,291)
( 42,290)( 43,299)( 44,298)( 45,302)( 46,301)( 47,300)( 48,279)( 49,278)
( 50,282)( 51,281)( 52,280)( 53,274)( 54,273)( 55,277)( 56,276)( 57,275)
( 58,284)( 59,283)( 60,287)( 61,286)( 62,285)( 63,339)( 64,338)( 65,342)
( 66,341)( 67,340)( 68,334)( 69,333)( 70,337)( 71,336)( 72,335)( 73,344)
( 74,343)( 75,347)( 76,346)( 77,345)( 78,354)( 79,353)( 80,357)( 81,356)
( 82,355)( 83,349)( 84,348)( 85,352)( 86,351)( 87,350)( 88,359)( 89,358)
( 90,362)( 91,361)( 92,360)( 93,309)( 94,308)( 95,312)( 96,311)( 97,310)
( 98,304)( 99,303)(100,307)(101,306)(102,305)(103,314)(104,313)(105,317)
(106,316)(107,315)(108,324)(109,323)(110,327)(111,326)(112,325)(113,319)
(114,318)(115,322)(116,321)(117,320)(118,329)(119,328)(120,332)(121,331)
(122,330)(123,429)(124,428)(125,432)(126,431)(127,430)(128,424)(129,423)
(130,427)(131,426)(132,425)(133,434)(134,433)(135,437)(136,436)(137,435)
(138,444)(139,443)(140,447)(141,446)(142,445)(143,439)(144,438)(145,442)
(146,441)(147,440)(148,449)(149,448)(150,452)(151,451)(152,450)(153,474)
(154,473)(155,477)(156,476)(157,475)(158,469)(159,468)(160,472)(161,471)
(162,470)(163,479)(164,478)(165,482)(166,481)(167,480)(168,459)(169,458)
(170,462)(171,461)(172,460)(173,454)(174,453)(175,457)(176,456)(177,455)
(178,464)(179,463)(180,467)(181,466)(182,465)(183,369)(184,368)(185,372)
(186,371)(187,370)(188,364)(189,363)(190,367)(191,366)(192,365)(193,374)
(194,373)(195,377)(196,376)(197,375)(198,384)(199,383)(200,387)(201,386)
(202,385)(203,379)(204,378)(205,382)(206,381)(207,380)(208,389)(209,388)
(210,392)(211,391)(212,390)(213,414)(214,413)(215,417)(216,416)(217,415)
(218,409)(219,408)(220,412)(221,411)(222,410)(223,419)(224,418)(225,422)
(226,421)(227,420)(228,399)(229,398)(230,402)(231,401)(232,400)(233,394)
(234,393)(235,397)(236,396)(237,395)(238,404)(239,403)(240,407)(241,406)
(242,405);
poly := sub<Sym(482)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope