Polytope of Type {480,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {480,2}*1920
if this polytope has a name.
Group : SmallGroup(1920,44843)
Rank : 3
Schlafli Type : {480,2}
Number of vertices, edges, etc : 480, 480, 2
Order of s0s1s2 : 480
Order of s0s1s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
   Self-Petrie
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {240,2}*960
   3-fold quotients : {160,2}*640
   4-fold quotients : {120,2}*480
   5-fold quotients : {96,2}*384
   6-fold quotients : {80,2}*320
   8-fold quotients : {60,2}*240
   10-fold quotients : {48,2}*192
   12-fold quotients : {40,2}*160
   15-fold quotients : {32,2}*128
   16-fold quotients : {30,2}*120
   20-fold quotients : {24,2}*96
   24-fold quotients : {20,2}*80
   30-fold quotients : {16,2}*64
   32-fold quotients : {15,2}*60
   40-fold quotients : {12,2}*48
   48-fold quotients : {10,2}*40
   60-fold quotients : {8,2}*32
   80-fold quotients : {6,2}*24
   96-fold quotients : {5,2}*20
   120-fold quotients : {4,2}*16
   160-fold quotients : {3,2}*12
   240-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2,  5)(  3,  4)(  6, 11)(  7, 15)(  8, 14)(  9, 13)( 10, 12)( 17, 20)
( 18, 19)( 21, 26)( 22, 30)( 23, 29)( 24, 28)( 25, 27)( 31, 46)( 32, 50)
( 33, 49)( 34, 48)( 35, 47)( 36, 56)( 37, 60)( 38, 59)( 39, 58)( 40, 57)
( 41, 51)( 42, 55)( 43, 54)( 44, 53)( 45, 52)( 61, 91)( 62, 95)( 63, 94)
( 64, 93)( 65, 92)( 66,101)( 67,105)( 68,104)( 69,103)( 70,102)( 71, 96)
( 72,100)( 73, 99)( 74, 98)( 75, 97)( 76,106)( 77,110)( 78,109)( 79,108)
( 80,107)( 81,116)( 82,120)( 83,119)( 84,118)( 85,117)( 86,111)( 87,115)
( 88,114)( 89,113)( 90,112)(121,181)(122,185)(123,184)(124,183)(125,182)
(126,191)(127,195)(128,194)(129,193)(130,192)(131,186)(132,190)(133,189)
(134,188)(135,187)(136,196)(137,200)(138,199)(139,198)(140,197)(141,206)
(142,210)(143,209)(144,208)(145,207)(146,201)(147,205)(148,204)(149,203)
(150,202)(151,226)(152,230)(153,229)(154,228)(155,227)(156,236)(157,240)
(158,239)(159,238)(160,237)(161,231)(162,235)(163,234)(164,233)(165,232)
(166,211)(167,215)(168,214)(169,213)(170,212)(171,221)(172,225)(173,224)
(174,223)(175,222)(176,216)(177,220)(178,219)(179,218)(180,217)(241,361)
(242,365)(243,364)(244,363)(245,362)(246,371)(247,375)(248,374)(249,373)
(250,372)(251,366)(252,370)(253,369)(254,368)(255,367)(256,376)(257,380)
(258,379)(259,378)(260,377)(261,386)(262,390)(263,389)(264,388)(265,387)
(266,381)(267,385)(268,384)(269,383)(270,382)(271,406)(272,410)(273,409)
(274,408)(275,407)(276,416)(277,420)(278,419)(279,418)(280,417)(281,411)
(282,415)(283,414)(284,413)(285,412)(286,391)(287,395)(288,394)(289,393)
(290,392)(291,401)(292,405)(293,404)(294,403)(295,402)(296,396)(297,400)
(298,399)(299,398)(300,397)(301,451)(302,455)(303,454)(304,453)(305,452)
(306,461)(307,465)(308,464)(309,463)(310,462)(311,456)(312,460)(313,459)
(314,458)(315,457)(316,466)(317,470)(318,469)(319,468)(320,467)(321,476)
(322,480)(323,479)(324,478)(325,477)(326,471)(327,475)(328,474)(329,473)
(330,472)(331,421)(332,425)(333,424)(334,423)(335,422)(336,431)(337,435)
(338,434)(339,433)(340,432)(341,426)(342,430)(343,429)(344,428)(345,427)
(346,436)(347,440)(348,439)(349,438)(350,437)(351,446)(352,450)(353,449)
(354,448)(355,447)(356,441)(357,445)(358,444)(359,443)(360,442);;
s1 := (  1,247)(  2,246)(  3,250)(  4,249)(  5,248)(  6,242)(  7,241)(  8,245)
(  9,244)( 10,243)( 11,252)( 12,251)( 13,255)( 14,254)( 15,253)( 16,262)
( 17,261)( 18,265)( 19,264)( 20,263)( 21,257)( 22,256)( 23,260)( 24,259)
( 25,258)( 26,267)( 27,266)( 28,270)( 29,269)( 30,268)( 31,292)( 32,291)
( 33,295)( 34,294)( 35,293)( 36,287)( 37,286)( 38,290)( 39,289)( 40,288)
( 41,297)( 42,296)( 43,300)( 44,299)( 45,298)( 46,277)( 47,276)( 48,280)
( 49,279)( 50,278)( 51,272)( 52,271)( 53,275)( 54,274)( 55,273)( 56,282)
( 57,281)( 58,285)( 59,284)( 60,283)( 61,337)( 62,336)( 63,340)( 64,339)
( 65,338)( 66,332)( 67,331)( 68,335)( 69,334)( 70,333)( 71,342)( 72,341)
( 73,345)( 74,344)( 75,343)( 76,352)( 77,351)( 78,355)( 79,354)( 80,353)
( 81,347)( 82,346)( 83,350)( 84,349)( 85,348)( 86,357)( 87,356)( 88,360)
( 89,359)( 90,358)( 91,307)( 92,306)( 93,310)( 94,309)( 95,308)( 96,302)
( 97,301)( 98,305)( 99,304)(100,303)(101,312)(102,311)(103,315)(104,314)
(105,313)(106,322)(107,321)(108,325)(109,324)(110,323)(111,317)(112,316)
(113,320)(114,319)(115,318)(116,327)(117,326)(118,330)(119,329)(120,328)
(121,427)(122,426)(123,430)(124,429)(125,428)(126,422)(127,421)(128,425)
(129,424)(130,423)(131,432)(132,431)(133,435)(134,434)(135,433)(136,442)
(137,441)(138,445)(139,444)(140,443)(141,437)(142,436)(143,440)(144,439)
(145,438)(146,447)(147,446)(148,450)(149,449)(150,448)(151,472)(152,471)
(153,475)(154,474)(155,473)(156,467)(157,466)(158,470)(159,469)(160,468)
(161,477)(162,476)(163,480)(164,479)(165,478)(166,457)(167,456)(168,460)
(169,459)(170,458)(171,452)(172,451)(173,455)(174,454)(175,453)(176,462)
(177,461)(178,465)(179,464)(180,463)(181,367)(182,366)(183,370)(184,369)
(185,368)(186,362)(187,361)(188,365)(189,364)(190,363)(191,372)(192,371)
(193,375)(194,374)(195,373)(196,382)(197,381)(198,385)(199,384)(200,383)
(201,377)(202,376)(203,380)(204,379)(205,378)(206,387)(207,386)(208,390)
(209,389)(210,388)(211,412)(212,411)(213,415)(214,414)(215,413)(216,407)
(217,406)(218,410)(219,409)(220,408)(221,417)(222,416)(223,420)(224,419)
(225,418)(226,397)(227,396)(228,400)(229,399)(230,398)(231,392)(232,391)
(233,395)(234,394)(235,393)(236,402)(237,401)(238,405)(239,404)(240,403);;
s2 := (481,482);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(482)!(  2,  5)(  3,  4)(  6, 11)(  7, 15)(  8, 14)(  9, 13)( 10, 12)
( 17, 20)( 18, 19)( 21, 26)( 22, 30)( 23, 29)( 24, 28)( 25, 27)( 31, 46)
( 32, 50)( 33, 49)( 34, 48)( 35, 47)( 36, 56)( 37, 60)( 38, 59)( 39, 58)
( 40, 57)( 41, 51)( 42, 55)( 43, 54)( 44, 53)( 45, 52)( 61, 91)( 62, 95)
( 63, 94)( 64, 93)( 65, 92)( 66,101)( 67,105)( 68,104)( 69,103)( 70,102)
( 71, 96)( 72,100)( 73, 99)( 74, 98)( 75, 97)( 76,106)( 77,110)( 78,109)
( 79,108)( 80,107)( 81,116)( 82,120)( 83,119)( 84,118)( 85,117)( 86,111)
( 87,115)( 88,114)( 89,113)( 90,112)(121,181)(122,185)(123,184)(124,183)
(125,182)(126,191)(127,195)(128,194)(129,193)(130,192)(131,186)(132,190)
(133,189)(134,188)(135,187)(136,196)(137,200)(138,199)(139,198)(140,197)
(141,206)(142,210)(143,209)(144,208)(145,207)(146,201)(147,205)(148,204)
(149,203)(150,202)(151,226)(152,230)(153,229)(154,228)(155,227)(156,236)
(157,240)(158,239)(159,238)(160,237)(161,231)(162,235)(163,234)(164,233)
(165,232)(166,211)(167,215)(168,214)(169,213)(170,212)(171,221)(172,225)
(173,224)(174,223)(175,222)(176,216)(177,220)(178,219)(179,218)(180,217)
(241,361)(242,365)(243,364)(244,363)(245,362)(246,371)(247,375)(248,374)
(249,373)(250,372)(251,366)(252,370)(253,369)(254,368)(255,367)(256,376)
(257,380)(258,379)(259,378)(260,377)(261,386)(262,390)(263,389)(264,388)
(265,387)(266,381)(267,385)(268,384)(269,383)(270,382)(271,406)(272,410)
(273,409)(274,408)(275,407)(276,416)(277,420)(278,419)(279,418)(280,417)
(281,411)(282,415)(283,414)(284,413)(285,412)(286,391)(287,395)(288,394)
(289,393)(290,392)(291,401)(292,405)(293,404)(294,403)(295,402)(296,396)
(297,400)(298,399)(299,398)(300,397)(301,451)(302,455)(303,454)(304,453)
(305,452)(306,461)(307,465)(308,464)(309,463)(310,462)(311,456)(312,460)
(313,459)(314,458)(315,457)(316,466)(317,470)(318,469)(319,468)(320,467)
(321,476)(322,480)(323,479)(324,478)(325,477)(326,471)(327,475)(328,474)
(329,473)(330,472)(331,421)(332,425)(333,424)(334,423)(335,422)(336,431)
(337,435)(338,434)(339,433)(340,432)(341,426)(342,430)(343,429)(344,428)
(345,427)(346,436)(347,440)(348,439)(349,438)(350,437)(351,446)(352,450)
(353,449)(354,448)(355,447)(356,441)(357,445)(358,444)(359,443)(360,442);
s1 := Sym(482)!(  1,247)(  2,246)(  3,250)(  4,249)(  5,248)(  6,242)(  7,241)
(  8,245)(  9,244)( 10,243)( 11,252)( 12,251)( 13,255)( 14,254)( 15,253)
( 16,262)( 17,261)( 18,265)( 19,264)( 20,263)( 21,257)( 22,256)( 23,260)
( 24,259)( 25,258)( 26,267)( 27,266)( 28,270)( 29,269)( 30,268)( 31,292)
( 32,291)( 33,295)( 34,294)( 35,293)( 36,287)( 37,286)( 38,290)( 39,289)
( 40,288)( 41,297)( 42,296)( 43,300)( 44,299)( 45,298)( 46,277)( 47,276)
( 48,280)( 49,279)( 50,278)( 51,272)( 52,271)( 53,275)( 54,274)( 55,273)
( 56,282)( 57,281)( 58,285)( 59,284)( 60,283)( 61,337)( 62,336)( 63,340)
( 64,339)( 65,338)( 66,332)( 67,331)( 68,335)( 69,334)( 70,333)( 71,342)
( 72,341)( 73,345)( 74,344)( 75,343)( 76,352)( 77,351)( 78,355)( 79,354)
( 80,353)( 81,347)( 82,346)( 83,350)( 84,349)( 85,348)( 86,357)( 87,356)
( 88,360)( 89,359)( 90,358)( 91,307)( 92,306)( 93,310)( 94,309)( 95,308)
( 96,302)( 97,301)( 98,305)( 99,304)(100,303)(101,312)(102,311)(103,315)
(104,314)(105,313)(106,322)(107,321)(108,325)(109,324)(110,323)(111,317)
(112,316)(113,320)(114,319)(115,318)(116,327)(117,326)(118,330)(119,329)
(120,328)(121,427)(122,426)(123,430)(124,429)(125,428)(126,422)(127,421)
(128,425)(129,424)(130,423)(131,432)(132,431)(133,435)(134,434)(135,433)
(136,442)(137,441)(138,445)(139,444)(140,443)(141,437)(142,436)(143,440)
(144,439)(145,438)(146,447)(147,446)(148,450)(149,449)(150,448)(151,472)
(152,471)(153,475)(154,474)(155,473)(156,467)(157,466)(158,470)(159,469)
(160,468)(161,477)(162,476)(163,480)(164,479)(165,478)(166,457)(167,456)
(168,460)(169,459)(170,458)(171,452)(172,451)(173,455)(174,454)(175,453)
(176,462)(177,461)(178,465)(179,464)(180,463)(181,367)(182,366)(183,370)
(184,369)(185,368)(186,362)(187,361)(188,365)(189,364)(190,363)(191,372)
(192,371)(193,375)(194,374)(195,373)(196,382)(197,381)(198,385)(199,384)
(200,383)(201,377)(202,376)(203,380)(204,379)(205,378)(206,387)(207,386)
(208,390)(209,389)(210,388)(211,412)(212,411)(213,415)(214,414)(215,413)
(216,407)(217,406)(218,410)(219,409)(220,408)(221,417)(222,416)(223,420)
(224,419)(225,418)(226,397)(227,396)(228,400)(229,399)(230,398)(231,392)
(232,391)(233,395)(234,394)(235,393)(236,402)(237,401)(238,405)(239,404)
(240,403);
s2 := Sym(482)!(481,482);
poly := sub<Sym(482)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope