include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,484}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,484}*1936
if this polytope has a name.
Group : SmallGroup(1936,29)
Rank : 3
Schlafli Type : {2,484}
Number of vertices, edges, etc : 2, 484, 484
Order of s0s1s2 : 484
Order of s0s1s2s1 : 2
Special Properties :
Degenerate
Universal
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,242}*968
4-fold quotients : {2,121}*484
11-fold quotients : {2,44}*176
22-fold quotients : {2,22}*88
44-fold quotients : {2,11}*44
121-fold quotients : {2,4}*16
242-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 13)( 5, 12)( 6, 11)( 7, 10)( 8, 9)( 14,123)( 15,122)( 16,121)
( 17,120)( 18,119)( 19,118)( 20,117)( 21,116)( 22,115)( 23,114)( 24,113)
( 25,112)( 26,111)( 27,110)( 28,109)( 29,108)( 30,107)( 31,106)( 32,105)
( 33,104)( 34,103)( 35,102)( 36,101)( 37,100)( 38, 99)( 39, 98)( 40, 97)
( 41, 96)( 42, 95)( 43, 94)( 44, 93)( 45, 92)( 46, 91)( 47, 90)( 48, 89)
( 49, 88)( 50, 87)( 51, 86)( 52, 85)( 53, 84)( 54, 83)( 55, 82)( 56, 81)
( 57, 80)( 58, 79)( 59, 78)( 60, 77)( 61, 76)( 62, 75)( 63, 74)( 64, 73)
( 65, 72)( 66, 71)( 67, 70)( 68, 69)(125,134)(126,133)(127,132)(128,131)
(129,130)(135,244)(136,243)(137,242)(138,241)(139,240)(140,239)(141,238)
(142,237)(143,236)(144,235)(145,234)(146,233)(147,232)(148,231)(149,230)
(150,229)(151,228)(152,227)(153,226)(154,225)(155,224)(156,223)(157,222)
(158,221)(159,220)(160,219)(161,218)(162,217)(163,216)(164,215)(165,214)
(166,213)(167,212)(168,211)(169,210)(170,209)(171,208)(172,207)(173,206)
(174,205)(175,204)(176,203)(177,202)(178,201)(179,200)(180,199)(181,198)
(182,197)(183,196)(184,195)(185,194)(186,193)(187,192)(188,191)(189,190)
(245,366)(246,376)(247,375)(248,374)(249,373)(250,372)(251,371)(252,370)
(253,369)(254,368)(255,367)(256,486)(257,485)(258,484)(259,483)(260,482)
(261,481)(262,480)(263,479)(264,478)(265,477)(266,476)(267,475)(268,474)
(269,473)(270,472)(271,471)(272,470)(273,469)(274,468)(275,467)(276,466)
(277,465)(278,464)(279,463)(280,462)(281,461)(282,460)(283,459)(284,458)
(285,457)(286,456)(287,455)(288,454)(289,453)(290,452)(291,451)(292,450)
(293,449)(294,448)(295,447)(296,446)(297,445)(298,444)(299,443)(300,442)
(301,441)(302,440)(303,439)(304,438)(305,437)(306,436)(307,435)(308,434)
(309,433)(310,432)(311,431)(312,430)(313,429)(314,428)(315,427)(316,426)
(317,425)(318,424)(319,423)(320,422)(321,421)(322,420)(323,419)(324,418)
(325,417)(326,416)(327,415)(328,414)(329,413)(330,412)(331,411)(332,410)
(333,409)(334,408)(335,407)(336,406)(337,405)(338,404)(339,403)(340,402)
(341,401)(342,400)(343,399)(344,398)(345,397)(346,396)(347,395)(348,394)
(349,393)(350,392)(351,391)(352,390)(353,389)(354,388)(355,387)(356,386)
(357,385)(358,384)(359,383)(360,382)(361,381)(362,380)(363,379)(364,378)
(365,377);;
s2 := ( 3,256)( 4,266)( 5,265)( 6,264)( 7,263)( 8,262)( 9,261)( 10,260)
( 11,259)( 12,258)( 13,257)( 14,245)( 15,255)( 16,254)( 17,253)( 18,252)
( 19,251)( 20,250)( 21,249)( 22,248)( 23,247)( 24,246)( 25,365)( 26,364)
( 27,363)( 28,362)( 29,361)( 30,360)( 31,359)( 32,358)( 33,357)( 34,356)
( 35,355)( 36,354)( 37,353)( 38,352)( 39,351)( 40,350)( 41,349)( 42,348)
( 43,347)( 44,346)( 45,345)( 46,344)( 47,343)( 48,342)( 49,341)( 50,340)
( 51,339)( 52,338)( 53,337)( 54,336)( 55,335)( 56,334)( 57,333)( 58,332)
( 59,331)( 60,330)( 61,329)( 62,328)( 63,327)( 64,326)( 65,325)( 66,324)
( 67,323)( 68,322)( 69,321)( 70,320)( 71,319)( 72,318)( 73,317)( 74,316)
( 75,315)( 76,314)( 77,313)( 78,312)( 79,311)( 80,310)( 81,309)( 82,308)
( 83,307)( 84,306)( 85,305)( 86,304)( 87,303)( 88,302)( 89,301)( 90,300)
( 91,299)( 92,298)( 93,297)( 94,296)( 95,295)( 96,294)( 97,293)( 98,292)
( 99,291)(100,290)(101,289)(102,288)(103,287)(104,286)(105,285)(106,284)
(107,283)(108,282)(109,281)(110,280)(111,279)(112,278)(113,277)(114,276)
(115,275)(116,274)(117,273)(118,272)(119,271)(120,270)(121,269)(122,268)
(123,267)(124,377)(125,387)(126,386)(127,385)(128,384)(129,383)(130,382)
(131,381)(132,380)(133,379)(134,378)(135,366)(136,376)(137,375)(138,374)
(139,373)(140,372)(141,371)(142,370)(143,369)(144,368)(145,367)(146,486)
(147,485)(148,484)(149,483)(150,482)(151,481)(152,480)(153,479)(154,478)
(155,477)(156,476)(157,475)(158,474)(159,473)(160,472)(161,471)(162,470)
(163,469)(164,468)(165,467)(166,466)(167,465)(168,464)(169,463)(170,462)
(171,461)(172,460)(173,459)(174,458)(175,457)(176,456)(177,455)(178,454)
(179,453)(180,452)(181,451)(182,450)(183,449)(184,448)(185,447)(186,446)
(187,445)(188,444)(189,443)(190,442)(191,441)(192,440)(193,439)(194,438)
(195,437)(196,436)(197,435)(198,434)(199,433)(200,432)(201,431)(202,430)
(203,429)(204,428)(205,427)(206,426)(207,425)(208,424)(209,423)(210,422)
(211,421)(212,420)(213,419)(214,418)(215,417)(216,416)(217,415)(218,414)
(219,413)(220,412)(221,411)(222,410)(223,409)(224,408)(225,407)(226,406)
(227,405)(228,404)(229,403)(230,402)(231,401)(232,400)(233,399)(234,398)
(235,397)(236,396)(237,395)(238,394)(239,393)(240,392)(241,391)(242,390)
(243,389)(244,388);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s1*s0*s1, s0*s2*s0*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(486)!(1,2);
s1 := Sym(486)!( 4, 13)( 5, 12)( 6, 11)( 7, 10)( 8, 9)( 14,123)( 15,122)
( 16,121)( 17,120)( 18,119)( 19,118)( 20,117)( 21,116)( 22,115)( 23,114)
( 24,113)( 25,112)( 26,111)( 27,110)( 28,109)( 29,108)( 30,107)( 31,106)
( 32,105)( 33,104)( 34,103)( 35,102)( 36,101)( 37,100)( 38, 99)( 39, 98)
( 40, 97)( 41, 96)( 42, 95)( 43, 94)( 44, 93)( 45, 92)( 46, 91)( 47, 90)
( 48, 89)( 49, 88)( 50, 87)( 51, 86)( 52, 85)( 53, 84)( 54, 83)( 55, 82)
( 56, 81)( 57, 80)( 58, 79)( 59, 78)( 60, 77)( 61, 76)( 62, 75)( 63, 74)
( 64, 73)( 65, 72)( 66, 71)( 67, 70)( 68, 69)(125,134)(126,133)(127,132)
(128,131)(129,130)(135,244)(136,243)(137,242)(138,241)(139,240)(140,239)
(141,238)(142,237)(143,236)(144,235)(145,234)(146,233)(147,232)(148,231)
(149,230)(150,229)(151,228)(152,227)(153,226)(154,225)(155,224)(156,223)
(157,222)(158,221)(159,220)(160,219)(161,218)(162,217)(163,216)(164,215)
(165,214)(166,213)(167,212)(168,211)(169,210)(170,209)(171,208)(172,207)
(173,206)(174,205)(175,204)(176,203)(177,202)(178,201)(179,200)(180,199)
(181,198)(182,197)(183,196)(184,195)(185,194)(186,193)(187,192)(188,191)
(189,190)(245,366)(246,376)(247,375)(248,374)(249,373)(250,372)(251,371)
(252,370)(253,369)(254,368)(255,367)(256,486)(257,485)(258,484)(259,483)
(260,482)(261,481)(262,480)(263,479)(264,478)(265,477)(266,476)(267,475)
(268,474)(269,473)(270,472)(271,471)(272,470)(273,469)(274,468)(275,467)
(276,466)(277,465)(278,464)(279,463)(280,462)(281,461)(282,460)(283,459)
(284,458)(285,457)(286,456)(287,455)(288,454)(289,453)(290,452)(291,451)
(292,450)(293,449)(294,448)(295,447)(296,446)(297,445)(298,444)(299,443)
(300,442)(301,441)(302,440)(303,439)(304,438)(305,437)(306,436)(307,435)
(308,434)(309,433)(310,432)(311,431)(312,430)(313,429)(314,428)(315,427)
(316,426)(317,425)(318,424)(319,423)(320,422)(321,421)(322,420)(323,419)
(324,418)(325,417)(326,416)(327,415)(328,414)(329,413)(330,412)(331,411)
(332,410)(333,409)(334,408)(335,407)(336,406)(337,405)(338,404)(339,403)
(340,402)(341,401)(342,400)(343,399)(344,398)(345,397)(346,396)(347,395)
(348,394)(349,393)(350,392)(351,391)(352,390)(353,389)(354,388)(355,387)
(356,386)(357,385)(358,384)(359,383)(360,382)(361,381)(362,380)(363,379)
(364,378)(365,377);
s2 := Sym(486)!( 3,256)( 4,266)( 5,265)( 6,264)( 7,263)( 8,262)( 9,261)
( 10,260)( 11,259)( 12,258)( 13,257)( 14,245)( 15,255)( 16,254)( 17,253)
( 18,252)( 19,251)( 20,250)( 21,249)( 22,248)( 23,247)( 24,246)( 25,365)
( 26,364)( 27,363)( 28,362)( 29,361)( 30,360)( 31,359)( 32,358)( 33,357)
( 34,356)( 35,355)( 36,354)( 37,353)( 38,352)( 39,351)( 40,350)( 41,349)
( 42,348)( 43,347)( 44,346)( 45,345)( 46,344)( 47,343)( 48,342)( 49,341)
( 50,340)( 51,339)( 52,338)( 53,337)( 54,336)( 55,335)( 56,334)( 57,333)
( 58,332)( 59,331)( 60,330)( 61,329)( 62,328)( 63,327)( 64,326)( 65,325)
( 66,324)( 67,323)( 68,322)( 69,321)( 70,320)( 71,319)( 72,318)( 73,317)
( 74,316)( 75,315)( 76,314)( 77,313)( 78,312)( 79,311)( 80,310)( 81,309)
( 82,308)( 83,307)( 84,306)( 85,305)( 86,304)( 87,303)( 88,302)( 89,301)
( 90,300)( 91,299)( 92,298)( 93,297)( 94,296)( 95,295)( 96,294)( 97,293)
( 98,292)( 99,291)(100,290)(101,289)(102,288)(103,287)(104,286)(105,285)
(106,284)(107,283)(108,282)(109,281)(110,280)(111,279)(112,278)(113,277)
(114,276)(115,275)(116,274)(117,273)(118,272)(119,271)(120,270)(121,269)
(122,268)(123,267)(124,377)(125,387)(126,386)(127,385)(128,384)(129,383)
(130,382)(131,381)(132,380)(133,379)(134,378)(135,366)(136,376)(137,375)
(138,374)(139,373)(140,372)(141,371)(142,370)(143,369)(144,368)(145,367)
(146,486)(147,485)(148,484)(149,483)(150,482)(151,481)(152,480)(153,479)
(154,478)(155,477)(156,476)(157,475)(158,474)(159,473)(160,472)(161,471)
(162,470)(163,469)(164,468)(165,467)(166,466)(167,465)(168,464)(169,463)
(170,462)(171,461)(172,460)(173,459)(174,458)(175,457)(176,456)(177,455)
(178,454)(179,453)(180,452)(181,451)(182,450)(183,449)(184,448)(185,447)
(186,446)(187,445)(188,444)(189,443)(190,442)(191,441)(192,440)(193,439)
(194,438)(195,437)(196,436)(197,435)(198,434)(199,433)(200,432)(201,431)
(202,430)(203,429)(204,428)(205,427)(206,426)(207,425)(208,424)(209,423)
(210,422)(211,421)(212,420)(213,419)(214,418)(215,417)(216,416)(217,415)
(218,414)(219,413)(220,412)(221,411)(222,410)(223,409)(224,408)(225,407)
(226,406)(227,405)(228,404)(229,403)(230,402)(231,401)(232,400)(233,399)
(234,398)(235,397)(236,396)(237,395)(238,394)(239,393)(240,392)(241,391)
(242,390)(243,389)(244,388);
poly := sub<Sym(486)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope