Polytope of Type {484,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {484,2}*1936
if this polytope has a name.
Group : SmallGroup(1936,29)
Rank : 3
Schlafli Type : {484,2}
Number of vertices, edges, etc : 484, 484, 2
Order of s0s1s2 : 484
Order of s0s1s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
   Self-Petrie
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {242,2}*968
   4-fold quotients : {121,2}*484
   11-fold quotients : {44,2}*176
   22-fold quotients : {22,2}*88
   44-fold quotients : {11,2}*44
   121-fold quotients : {4,2}*16
   242-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2, 11)(  3, 10)(  4,  9)(  5,  8)(  6,  7)( 12,121)( 13,120)( 14,119)
( 15,118)( 16,117)( 17,116)( 18,115)( 19,114)( 20,113)( 21,112)( 22,111)
( 23,110)( 24,109)( 25,108)( 26,107)( 27,106)( 28,105)( 29,104)( 30,103)
( 31,102)( 32,101)( 33,100)( 34, 99)( 35, 98)( 36, 97)( 37, 96)( 38, 95)
( 39, 94)( 40, 93)( 41, 92)( 42, 91)( 43, 90)( 44, 89)( 45, 88)( 46, 87)
( 47, 86)( 48, 85)( 49, 84)( 50, 83)( 51, 82)( 52, 81)( 53, 80)( 54, 79)
( 55, 78)( 56, 77)( 57, 76)( 58, 75)( 59, 74)( 60, 73)( 61, 72)( 62, 71)
( 63, 70)( 64, 69)( 65, 68)( 66, 67)(123,132)(124,131)(125,130)(126,129)
(127,128)(133,242)(134,241)(135,240)(136,239)(137,238)(138,237)(139,236)
(140,235)(141,234)(142,233)(143,232)(144,231)(145,230)(146,229)(147,228)
(148,227)(149,226)(150,225)(151,224)(152,223)(153,222)(154,221)(155,220)
(156,219)(157,218)(158,217)(159,216)(160,215)(161,214)(162,213)(163,212)
(164,211)(165,210)(166,209)(167,208)(168,207)(169,206)(170,205)(171,204)
(172,203)(173,202)(174,201)(175,200)(176,199)(177,198)(178,197)(179,196)
(180,195)(181,194)(182,193)(183,192)(184,191)(185,190)(186,189)(187,188)
(243,364)(244,374)(245,373)(246,372)(247,371)(248,370)(249,369)(250,368)
(251,367)(252,366)(253,365)(254,484)(255,483)(256,482)(257,481)(258,480)
(259,479)(260,478)(261,477)(262,476)(263,475)(264,474)(265,473)(266,472)
(267,471)(268,470)(269,469)(270,468)(271,467)(272,466)(273,465)(274,464)
(275,463)(276,462)(277,461)(278,460)(279,459)(280,458)(281,457)(282,456)
(283,455)(284,454)(285,453)(286,452)(287,451)(288,450)(289,449)(290,448)
(291,447)(292,446)(293,445)(294,444)(295,443)(296,442)(297,441)(298,440)
(299,439)(300,438)(301,437)(302,436)(303,435)(304,434)(305,433)(306,432)
(307,431)(308,430)(309,429)(310,428)(311,427)(312,426)(313,425)(314,424)
(315,423)(316,422)(317,421)(318,420)(319,419)(320,418)(321,417)(322,416)
(323,415)(324,414)(325,413)(326,412)(327,411)(328,410)(329,409)(330,408)
(331,407)(332,406)(333,405)(334,404)(335,403)(336,402)(337,401)(338,400)
(339,399)(340,398)(341,397)(342,396)(343,395)(344,394)(345,393)(346,392)
(347,391)(348,390)(349,389)(350,388)(351,387)(352,386)(353,385)(354,384)
(355,383)(356,382)(357,381)(358,380)(359,379)(360,378)(361,377)(362,376)
(363,375);;
s1 := (  1,254)(  2,264)(  3,263)(  4,262)(  5,261)(  6,260)(  7,259)(  8,258)
(  9,257)( 10,256)( 11,255)( 12,243)( 13,253)( 14,252)( 15,251)( 16,250)
( 17,249)( 18,248)( 19,247)( 20,246)( 21,245)( 22,244)( 23,363)( 24,362)
( 25,361)( 26,360)( 27,359)( 28,358)( 29,357)( 30,356)( 31,355)( 32,354)
( 33,353)( 34,352)( 35,351)( 36,350)( 37,349)( 38,348)( 39,347)( 40,346)
( 41,345)( 42,344)( 43,343)( 44,342)( 45,341)( 46,340)( 47,339)( 48,338)
( 49,337)( 50,336)( 51,335)( 52,334)( 53,333)( 54,332)( 55,331)( 56,330)
( 57,329)( 58,328)( 59,327)( 60,326)( 61,325)( 62,324)( 63,323)( 64,322)
( 65,321)( 66,320)( 67,319)( 68,318)( 69,317)( 70,316)( 71,315)( 72,314)
( 73,313)( 74,312)( 75,311)( 76,310)( 77,309)( 78,308)( 79,307)( 80,306)
( 81,305)( 82,304)( 83,303)( 84,302)( 85,301)( 86,300)( 87,299)( 88,298)
( 89,297)( 90,296)( 91,295)( 92,294)( 93,293)( 94,292)( 95,291)( 96,290)
( 97,289)( 98,288)( 99,287)(100,286)(101,285)(102,284)(103,283)(104,282)
(105,281)(106,280)(107,279)(108,278)(109,277)(110,276)(111,275)(112,274)
(113,273)(114,272)(115,271)(116,270)(117,269)(118,268)(119,267)(120,266)
(121,265)(122,375)(123,385)(124,384)(125,383)(126,382)(127,381)(128,380)
(129,379)(130,378)(131,377)(132,376)(133,364)(134,374)(135,373)(136,372)
(137,371)(138,370)(139,369)(140,368)(141,367)(142,366)(143,365)(144,484)
(145,483)(146,482)(147,481)(148,480)(149,479)(150,478)(151,477)(152,476)
(153,475)(154,474)(155,473)(156,472)(157,471)(158,470)(159,469)(160,468)
(161,467)(162,466)(163,465)(164,464)(165,463)(166,462)(167,461)(168,460)
(169,459)(170,458)(171,457)(172,456)(173,455)(174,454)(175,453)(176,452)
(177,451)(178,450)(179,449)(180,448)(181,447)(182,446)(183,445)(184,444)
(185,443)(186,442)(187,441)(188,440)(189,439)(190,438)(191,437)(192,436)
(193,435)(194,434)(195,433)(196,432)(197,431)(198,430)(199,429)(200,428)
(201,427)(202,426)(203,425)(204,424)(205,423)(206,422)(207,421)(208,420)
(209,419)(210,418)(211,417)(212,416)(213,415)(214,414)(215,413)(216,412)
(217,411)(218,410)(219,409)(220,408)(221,407)(222,406)(223,405)(224,404)
(225,403)(226,402)(227,401)(228,400)(229,399)(230,398)(231,397)(232,396)
(233,395)(234,394)(235,393)(236,392)(237,391)(238,390)(239,389)(240,388)
(241,387)(242,386);;
s2 := (485,486);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(486)!(  2, 11)(  3, 10)(  4,  9)(  5,  8)(  6,  7)( 12,121)( 13,120)
( 14,119)( 15,118)( 16,117)( 17,116)( 18,115)( 19,114)( 20,113)( 21,112)
( 22,111)( 23,110)( 24,109)( 25,108)( 26,107)( 27,106)( 28,105)( 29,104)
( 30,103)( 31,102)( 32,101)( 33,100)( 34, 99)( 35, 98)( 36, 97)( 37, 96)
( 38, 95)( 39, 94)( 40, 93)( 41, 92)( 42, 91)( 43, 90)( 44, 89)( 45, 88)
( 46, 87)( 47, 86)( 48, 85)( 49, 84)( 50, 83)( 51, 82)( 52, 81)( 53, 80)
( 54, 79)( 55, 78)( 56, 77)( 57, 76)( 58, 75)( 59, 74)( 60, 73)( 61, 72)
( 62, 71)( 63, 70)( 64, 69)( 65, 68)( 66, 67)(123,132)(124,131)(125,130)
(126,129)(127,128)(133,242)(134,241)(135,240)(136,239)(137,238)(138,237)
(139,236)(140,235)(141,234)(142,233)(143,232)(144,231)(145,230)(146,229)
(147,228)(148,227)(149,226)(150,225)(151,224)(152,223)(153,222)(154,221)
(155,220)(156,219)(157,218)(158,217)(159,216)(160,215)(161,214)(162,213)
(163,212)(164,211)(165,210)(166,209)(167,208)(168,207)(169,206)(170,205)
(171,204)(172,203)(173,202)(174,201)(175,200)(176,199)(177,198)(178,197)
(179,196)(180,195)(181,194)(182,193)(183,192)(184,191)(185,190)(186,189)
(187,188)(243,364)(244,374)(245,373)(246,372)(247,371)(248,370)(249,369)
(250,368)(251,367)(252,366)(253,365)(254,484)(255,483)(256,482)(257,481)
(258,480)(259,479)(260,478)(261,477)(262,476)(263,475)(264,474)(265,473)
(266,472)(267,471)(268,470)(269,469)(270,468)(271,467)(272,466)(273,465)
(274,464)(275,463)(276,462)(277,461)(278,460)(279,459)(280,458)(281,457)
(282,456)(283,455)(284,454)(285,453)(286,452)(287,451)(288,450)(289,449)
(290,448)(291,447)(292,446)(293,445)(294,444)(295,443)(296,442)(297,441)
(298,440)(299,439)(300,438)(301,437)(302,436)(303,435)(304,434)(305,433)
(306,432)(307,431)(308,430)(309,429)(310,428)(311,427)(312,426)(313,425)
(314,424)(315,423)(316,422)(317,421)(318,420)(319,419)(320,418)(321,417)
(322,416)(323,415)(324,414)(325,413)(326,412)(327,411)(328,410)(329,409)
(330,408)(331,407)(332,406)(333,405)(334,404)(335,403)(336,402)(337,401)
(338,400)(339,399)(340,398)(341,397)(342,396)(343,395)(344,394)(345,393)
(346,392)(347,391)(348,390)(349,389)(350,388)(351,387)(352,386)(353,385)
(354,384)(355,383)(356,382)(357,381)(358,380)(359,379)(360,378)(361,377)
(362,376)(363,375);
s1 := Sym(486)!(  1,254)(  2,264)(  3,263)(  4,262)(  5,261)(  6,260)(  7,259)
(  8,258)(  9,257)( 10,256)( 11,255)( 12,243)( 13,253)( 14,252)( 15,251)
( 16,250)( 17,249)( 18,248)( 19,247)( 20,246)( 21,245)( 22,244)( 23,363)
( 24,362)( 25,361)( 26,360)( 27,359)( 28,358)( 29,357)( 30,356)( 31,355)
( 32,354)( 33,353)( 34,352)( 35,351)( 36,350)( 37,349)( 38,348)( 39,347)
( 40,346)( 41,345)( 42,344)( 43,343)( 44,342)( 45,341)( 46,340)( 47,339)
( 48,338)( 49,337)( 50,336)( 51,335)( 52,334)( 53,333)( 54,332)( 55,331)
( 56,330)( 57,329)( 58,328)( 59,327)( 60,326)( 61,325)( 62,324)( 63,323)
( 64,322)( 65,321)( 66,320)( 67,319)( 68,318)( 69,317)( 70,316)( 71,315)
( 72,314)( 73,313)( 74,312)( 75,311)( 76,310)( 77,309)( 78,308)( 79,307)
( 80,306)( 81,305)( 82,304)( 83,303)( 84,302)( 85,301)( 86,300)( 87,299)
( 88,298)( 89,297)( 90,296)( 91,295)( 92,294)( 93,293)( 94,292)( 95,291)
( 96,290)( 97,289)( 98,288)( 99,287)(100,286)(101,285)(102,284)(103,283)
(104,282)(105,281)(106,280)(107,279)(108,278)(109,277)(110,276)(111,275)
(112,274)(113,273)(114,272)(115,271)(116,270)(117,269)(118,268)(119,267)
(120,266)(121,265)(122,375)(123,385)(124,384)(125,383)(126,382)(127,381)
(128,380)(129,379)(130,378)(131,377)(132,376)(133,364)(134,374)(135,373)
(136,372)(137,371)(138,370)(139,369)(140,368)(141,367)(142,366)(143,365)
(144,484)(145,483)(146,482)(147,481)(148,480)(149,479)(150,478)(151,477)
(152,476)(153,475)(154,474)(155,473)(156,472)(157,471)(158,470)(159,469)
(160,468)(161,467)(162,466)(163,465)(164,464)(165,463)(166,462)(167,461)
(168,460)(169,459)(170,458)(171,457)(172,456)(173,455)(174,454)(175,453)
(176,452)(177,451)(178,450)(179,449)(180,448)(181,447)(182,446)(183,445)
(184,444)(185,443)(186,442)(187,441)(188,440)(189,439)(190,438)(191,437)
(192,436)(193,435)(194,434)(195,433)(196,432)(197,431)(198,430)(199,429)
(200,428)(201,427)(202,426)(203,425)(204,424)(205,423)(206,422)(207,421)
(208,420)(209,419)(210,418)(211,417)(212,416)(213,415)(214,414)(215,413)
(216,412)(217,411)(218,410)(219,409)(220,408)(221,407)(222,406)(223,405)
(224,404)(225,403)(226,402)(227,401)(228,400)(229,399)(230,398)(231,397)
(232,396)(233,395)(234,394)(235,393)(236,392)(237,391)(238,390)(239,389)
(240,388)(241,387)(242,386);
s2 := Sym(486)!(485,486);
poly := sub<Sym(486)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope