Polytope of Type {2,486}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,486}*1944
if this polytope has a name.
Group : SmallGroup(1944,102)
Rank : 3
Schlafli Type : {2,486}
Number of vertices, edges, etc : 2, 486, 486
Order of s0s1s2 : 486
Order of s0s1s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,243}*972
   3-fold quotients : {2,162}*648
   6-fold quotients : {2,81}*324
   9-fold quotients : {2,54}*216
   18-fold quotients : {2,27}*108
   27-fold quotients : {2,18}*72
   54-fold quotients : {2,9}*36
   81-fold quotients : {2,6}*24
   162-fold quotients : {2,3}*12
   243-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  4,  5)(  6, 11)(  7, 10)(  8,  9)( 12, 29)( 13, 28)( 14, 27)( 15, 26)
( 16, 25)( 17, 24)( 18, 23)( 19, 22)( 20, 21)( 30, 83)( 31, 82)( 32, 81)
( 33, 80)( 34, 79)( 35, 78)( 36, 77)( 37, 76)( 38, 75)( 39, 74)( 40, 73)
( 41, 72)( 42, 71)( 43, 70)( 44, 69)( 45, 68)( 46, 67)( 47, 66)( 48, 65)
( 49, 64)( 50, 63)( 51, 62)( 52, 61)( 53, 60)( 54, 59)( 55, 58)( 56, 57)
( 84,245)( 85,244)( 86,243)( 87,242)( 88,241)( 89,240)( 90,239)( 91,238)
( 92,237)( 93,236)( 94,235)( 95,234)( 96,233)( 97,232)( 98,231)( 99,230)
(100,229)(101,228)(102,227)(103,226)(104,225)(105,224)(106,223)(107,222)
(108,221)(109,220)(110,219)(111,218)(112,217)(113,216)(114,215)(115,214)
(116,213)(117,212)(118,211)(119,210)(120,209)(121,208)(122,207)(123,206)
(124,205)(125,204)(126,203)(127,202)(128,201)(129,200)(130,199)(131,198)
(132,197)(133,196)(134,195)(135,194)(136,193)(137,192)(138,191)(139,190)
(140,189)(141,188)(142,187)(143,186)(144,185)(145,184)(146,183)(147,182)
(148,181)(149,180)(150,179)(151,178)(152,177)(153,176)(154,175)(155,174)
(156,173)(157,172)(158,171)(159,170)(160,169)(161,168)(162,167)(163,166)
(164,165)(247,248)(249,254)(250,253)(251,252)(255,272)(256,271)(257,270)
(258,269)(259,268)(260,267)(261,266)(262,265)(263,264)(273,326)(274,325)
(275,324)(276,323)(277,322)(278,321)(279,320)(280,319)(281,318)(282,317)
(283,316)(284,315)(285,314)(286,313)(287,312)(288,311)(289,310)(290,309)
(291,308)(292,307)(293,306)(294,305)(295,304)(296,303)(297,302)(298,301)
(299,300)(327,488)(328,487)(329,486)(330,485)(331,484)(332,483)(333,482)
(334,481)(335,480)(336,479)(337,478)(338,477)(339,476)(340,475)(341,474)
(342,473)(343,472)(344,471)(345,470)(346,469)(347,468)(348,467)(349,466)
(350,465)(351,464)(352,463)(353,462)(354,461)(355,460)(356,459)(357,458)
(358,457)(359,456)(360,455)(361,454)(362,453)(363,452)(364,451)(365,450)
(366,449)(367,448)(368,447)(369,446)(370,445)(371,444)(372,443)(373,442)
(374,441)(375,440)(376,439)(377,438)(378,437)(379,436)(380,435)(381,434)
(382,433)(383,432)(384,431)(385,430)(386,429)(387,428)(388,427)(389,426)
(390,425)(391,424)(392,423)(393,422)(394,421)(395,420)(396,419)(397,418)
(398,417)(399,416)(400,415)(401,414)(402,413)(403,412)(404,411)(405,410)
(406,409)(407,408);;
s2 := (  3,327)(  4,329)(  5,328)(  6,335)(  7,334)(  8,333)(  9,332)( 10,331)
( 11,330)( 12,353)( 13,352)( 14,351)( 15,350)( 16,349)( 17,348)( 18,347)
( 19,346)( 20,345)( 21,344)( 22,343)( 23,342)( 24,341)( 25,340)( 26,339)
( 27,338)( 28,337)( 29,336)( 30,407)( 31,406)( 32,405)( 33,404)( 34,403)
( 35,402)( 36,401)( 37,400)( 38,399)( 39,398)( 40,397)( 41,396)( 42,395)
( 43,394)( 44,393)( 45,392)( 46,391)( 47,390)( 48,389)( 49,388)( 50,387)
( 51,386)( 52,385)( 53,384)( 54,383)( 55,382)( 56,381)( 57,380)( 58,379)
( 59,378)( 60,377)( 61,376)( 62,375)( 63,374)( 64,373)( 65,372)( 66,371)
( 67,370)( 68,369)( 69,368)( 70,367)( 71,366)( 72,365)( 73,364)( 74,363)
( 75,362)( 76,361)( 77,360)( 78,359)( 79,358)( 80,357)( 81,356)( 82,355)
( 83,354)( 84,246)( 85,248)( 86,247)( 87,254)( 88,253)( 89,252)( 90,251)
( 91,250)( 92,249)( 93,272)( 94,271)( 95,270)( 96,269)( 97,268)( 98,267)
( 99,266)(100,265)(101,264)(102,263)(103,262)(104,261)(105,260)(106,259)
(107,258)(108,257)(109,256)(110,255)(111,326)(112,325)(113,324)(114,323)
(115,322)(116,321)(117,320)(118,319)(119,318)(120,317)(121,316)(122,315)
(123,314)(124,313)(125,312)(126,311)(127,310)(128,309)(129,308)(130,307)
(131,306)(132,305)(133,304)(134,303)(135,302)(136,301)(137,300)(138,299)
(139,298)(140,297)(141,296)(142,295)(143,294)(144,293)(145,292)(146,291)
(147,290)(148,289)(149,288)(150,287)(151,286)(152,285)(153,284)(154,283)
(155,282)(156,281)(157,280)(158,279)(159,278)(160,277)(161,276)(162,275)
(163,274)(164,273)(165,488)(166,487)(167,486)(168,485)(169,484)(170,483)
(171,482)(172,481)(173,480)(174,479)(175,478)(176,477)(177,476)(178,475)
(179,474)(180,473)(181,472)(182,471)(183,470)(184,469)(185,468)(186,467)
(187,466)(188,465)(189,464)(190,463)(191,462)(192,461)(193,460)(194,459)
(195,458)(196,457)(197,456)(198,455)(199,454)(200,453)(201,452)(202,451)
(203,450)(204,449)(205,448)(206,447)(207,446)(208,445)(209,444)(210,443)
(211,442)(212,441)(213,440)(214,439)(215,438)(216,437)(217,436)(218,435)
(219,434)(220,433)(221,432)(222,431)(223,430)(224,429)(225,428)(226,427)
(227,426)(228,425)(229,424)(230,423)(231,422)(232,421)(233,420)(234,419)
(235,418)(236,417)(237,416)(238,415)(239,414)(240,413)(241,412)(242,411)
(243,410)(244,409)(245,408);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(488)!(1,2);
s1 := Sym(488)!(  4,  5)(  6, 11)(  7, 10)(  8,  9)( 12, 29)( 13, 28)( 14, 27)
( 15, 26)( 16, 25)( 17, 24)( 18, 23)( 19, 22)( 20, 21)( 30, 83)( 31, 82)
( 32, 81)( 33, 80)( 34, 79)( 35, 78)( 36, 77)( 37, 76)( 38, 75)( 39, 74)
( 40, 73)( 41, 72)( 42, 71)( 43, 70)( 44, 69)( 45, 68)( 46, 67)( 47, 66)
( 48, 65)( 49, 64)( 50, 63)( 51, 62)( 52, 61)( 53, 60)( 54, 59)( 55, 58)
( 56, 57)( 84,245)( 85,244)( 86,243)( 87,242)( 88,241)( 89,240)( 90,239)
( 91,238)( 92,237)( 93,236)( 94,235)( 95,234)( 96,233)( 97,232)( 98,231)
( 99,230)(100,229)(101,228)(102,227)(103,226)(104,225)(105,224)(106,223)
(107,222)(108,221)(109,220)(110,219)(111,218)(112,217)(113,216)(114,215)
(115,214)(116,213)(117,212)(118,211)(119,210)(120,209)(121,208)(122,207)
(123,206)(124,205)(125,204)(126,203)(127,202)(128,201)(129,200)(130,199)
(131,198)(132,197)(133,196)(134,195)(135,194)(136,193)(137,192)(138,191)
(139,190)(140,189)(141,188)(142,187)(143,186)(144,185)(145,184)(146,183)
(147,182)(148,181)(149,180)(150,179)(151,178)(152,177)(153,176)(154,175)
(155,174)(156,173)(157,172)(158,171)(159,170)(160,169)(161,168)(162,167)
(163,166)(164,165)(247,248)(249,254)(250,253)(251,252)(255,272)(256,271)
(257,270)(258,269)(259,268)(260,267)(261,266)(262,265)(263,264)(273,326)
(274,325)(275,324)(276,323)(277,322)(278,321)(279,320)(280,319)(281,318)
(282,317)(283,316)(284,315)(285,314)(286,313)(287,312)(288,311)(289,310)
(290,309)(291,308)(292,307)(293,306)(294,305)(295,304)(296,303)(297,302)
(298,301)(299,300)(327,488)(328,487)(329,486)(330,485)(331,484)(332,483)
(333,482)(334,481)(335,480)(336,479)(337,478)(338,477)(339,476)(340,475)
(341,474)(342,473)(343,472)(344,471)(345,470)(346,469)(347,468)(348,467)
(349,466)(350,465)(351,464)(352,463)(353,462)(354,461)(355,460)(356,459)
(357,458)(358,457)(359,456)(360,455)(361,454)(362,453)(363,452)(364,451)
(365,450)(366,449)(367,448)(368,447)(369,446)(370,445)(371,444)(372,443)
(373,442)(374,441)(375,440)(376,439)(377,438)(378,437)(379,436)(380,435)
(381,434)(382,433)(383,432)(384,431)(385,430)(386,429)(387,428)(388,427)
(389,426)(390,425)(391,424)(392,423)(393,422)(394,421)(395,420)(396,419)
(397,418)(398,417)(399,416)(400,415)(401,414)(402,413)(403,412)(404,411)
(405,410)(406,409)(407,408);
s2 := Sym(488)!(  3,327)(  4,329)(  5,328)(  6,335)(  7,334)(  8,333)(  9,332)
( 10,331)( 11,330)( 12,353)( 13,352)( 14,351)( 15,350)( 16,349)( 17,348)
( 18,347)( 19,346)( 20,345)( 21,344)( 22,343)( 23,342)( 24,341)( 25,340)
( 26,339)( 27,338)( 28,337)( 29,336)( 30,407)( 31,406)( 32,405)( 33,404)
( 34,403)( 35,402)( 36,401)( 37,400)( 38,399)( 39,398)( 40,397)( 41,396)
( 42,395)( 43,394)( 44,393)( 45,392)( 46,391)( 47,390)( 48,389)( 49,388)
( 50,387)( 51,386)( 52,385)( 53,384)( 54,383)( 55,382)( 56,381)( 57,380)
( 58,379)( 59,378)( 60,377)( 61,376)( 62,375)( 63,374)( 64,373)( 65,372)
( 66,371)( 67,370)( 68,369)( 69,368)( 70,367)( 71,366)( 72,365)( 73,364)
( 74,363)( 75,362)( 76,361)( 77,360)( 78,359)( 79,358)( 80,357)( 81,356)
( 82,355)( 83,354)( 84,246)( 85,248)( 86,247)( 87,254)( 88,253)( 89,252)
( 90,251)( 91,250)( 92,249)( 93,272)( 94,271)( 95,270)( 96,269)( 97,268)
( 98,267)( 99,266)(100,265)(101,264)(102,263)(103,262)(104,261)(105,260)
(106,259)(107,258)(108,257)(109,256)(110,255)(111,326)(112,325)(113,324)
(114,323)(115,322)(116,321)(117,320)(118,319)(119,318)(120,317)(121,316)
(122,315)(123,314)(124,313)(125,312)(126,311)(127,310)(128,309)(129,308)
(130,307)(131,306)(132,305)(133,304)(134,303)(135,302)(136,301)(137,300)
(138,299)(139,298)(140,297)(141,296)(142,295)(143,294)(144,293)(145,292)
(146,291)(147,290)(148,289)(149,288)(150,287)(151,286)(152,285)(153,284)
(154,283)(155,282)(156,281)(157,280)(158,279)(159,278)(160,277)(161,276)
(162,275)(163,274)(164,273)(165,488)(166,487)(167,486)(168,485)(169,484)
(170,483)(171,482)(172,481)(173,480)(174,479)(175,478)(176,477)(177,476)
(178,475)(179,474)(180,473)(181,472)(182,471)(183,470)(184,469)(185,468)
(186,467)(187,466)(188,465)(189,464)(190,463)(191,462)(192,461)(193,460)
(194,459)(195,458)(196,457)(197,456)(198,455)(199,454)(200,453)(201,452)
(202,451)(203,450)(204,449)(205,448)(206,447)(207,446)(208,445)(209,444)
(210,443)(211,442)(212,441)(213,440)(214,439)(215,438)(216,437)(217,436)
(218,435)(219,434)(220,433)(221,432)(222,431)(223,430)(224,429)(225,428)
(226,427)(227,426)(228,425)(229,424)(230,423)(231,422)(232,421)(233,420)
(234,419)(235,418)(236,417)(237,416)(238,415)(239,414)(240,413)(241,412)
(242,411)(243,410)(244,409)(245,408);
poly := sub<Sym(488)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope