Polytope of Type {486}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {486}*972
Also Known As : 486-gon, {486}. if this polytope has another name.
Group : SmallGroup(972,4)
Rank : 2
Schlafli Type : {486}
Number of vertices, edges, etc : 486, 486
Order of s0s1 : 486
Special Properties :
   Universal
   Spherical
   Locally Spherical
   Orientable
   Self-Dual
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {486,2} of size 1944
Vertex Figure Of :
   {2,486} of size 1944
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {243}*486
   3-fold quotients : {162}*324
   6-fold quotients : {81}*162
   9-fold quotients : {54}*108
   18-fold quotients : {27}*54
   27-fold quotients : {18}*36
   54-fold quotients : {9}*18
   81-fold quotients : {6}*12
   162-fold quotients : {3}*6
   243-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
   2-fold covers : {972}*1944
Permutation Representation (GAP) :
s0 := (  2,  3)(  4,  9)(  5,  8)(  6,  7)( 10, 27)( 11, 26)( 12, 25)( 13, 24)
( 14, 23)( 15, 22)( 16, 21)( 17, 20)( 18, 19)( 28, 81)( 29, 80)( 30, 79)
( 31, 78)( 32, 77)( 33, 76)( 34, 75)( 35, 74)( 36, 73)( 37, 72)( 38, 71)
( 39, 70)( 40, 69)( 41, 68)( 42, 67)( 43, 66)( 44, 65)( 45, 64)( 46, 63)
( 47, 62)( 48, 61)( 49, 60)( 50, 59)( 51, 58)( 52, 57)( 53, 56)( 54, 55)
( 82,243)( 83,242)( 84,241)( 85,240)( 86,239)( 87,238)( 88,237)( 89,236)
( 90,235)( 91,234)( 92,233)( 93,232)( 94,231)( 95,230)( 96,229)( 97,228)
( 98,227)( 99,226)(100,225)(101,224)(102,223)(103,222)(104,221)(105,220)
(106,219)(107,218)(108,217)(109,216)(110,215)(111,214)(112,213)(113,212)
(114,211)(115,210)(116,209)(117,208)(118,207)(119,206)(120,205)(121,204)
(122,203)(123,202)(124,201)(125,200)(126,199)(127,198)(128,197)(129,196)
(130,195)(131,194)(132,193)(133,192)(134,191)(135,190)(136,189)(137,188)
(138,187)(139,186)(140,185)(141,184)(142,183)(143,182)(144,181)(145,180)
(146,179)(147,178)(148,177)(149,176)(150,175)(151,174)(152,173)(153,172)
(154,171)(155,170)(156,169)(157,168)(158,167)(159,166)(160,165)(161,164)
(162,163)(245,246)(247,252)(248,251)(249,250)(253,270)(254,269)(255,268)
(256,267)(257,266)(258,265)(259,264)(260,263)(261,262)(271,324)(272,323)
(273,322)(274,321)(275,320)(276,319)(277,318)(278,317)(279,316)(280,315)
(281,314)(282,313)(283,312)(284,311)(285,310)(286,309)(287,308)(288,307)
(289,306)(290,305)(291,304)(292,303)(293,302)(294,301)(295,300)(296,299)
(297,298)(325,486)(326,485)(327,484)(328,483)(329,482)(330,481)(331,480)
(332,479)(333,478)(334,477)(335,476)(336,475)(337,474)(338,473)(339,472)
(340,471)(341,470)(342,469)(343,468)(344,467)(345,466)(346,465)(347,464)
(348,463)(349,462)(350,461)(351,460)(352,459)(353,458)(354,457)(355,456)
(356,455)(357,454)(358,453)(359,452)(360,451)(361,450)(362,449)(363,448)
(364,447)(365,446)(366,445)(367,444)(368,443)(369,442)(370,441)(371,440)
(372,439)(373,438)(374,437)(375,436)(376,435)(377,434)(378,433)(379,432)
(380,431)(381,430)(382,429)(383,428)(384,427)(385,426)(386,425)(387,424)
(388,423)(389,422)(390,421)(391,420)(392,419)(393,418)(394,417)(395,416)
(396,415)(397,414)(398,413)(399,412)(400,411)(401,410)(402,409)(403,408)
(404,407)(405,406);;
s1 := (  1,325)(  2,327)(  3,326)(  4,333)(  5,332)(  6,331)(  7,330)(  8,329)
(  9,328)( 10,351)( 11,350)( 12,349)( 13,348)( 14,347)( 15,346)( 16,345)
( 17,344)( 18,343)( 19,342)( 20,341)( 21,340)( 22,339)( 23,338)( 24,337)
( 25,336)( 26,335)( 27,334)( 28,405)( 29,404)( 30,403)( 31,402)( 32,401)
( 33,400)( 34,399)( 35,398)( 36,397)( 37,396)( 38,395)( 39,394)( 40,393)
( 41,392)( 42,391)( 43,390)( 44,389)( 45,388)( 46,387)( 47,386)( 48,385)
( 49,384)( 50,383)( 51,382)( 52,381)( 53,380)( 54,379)( 55,378)( 56,377)
( 57,376)( 58,375)( 59,374)( 60,373)( 61,372)( 62,371)( 63,370)( 64,369)
( 65,368)( 66,367)( 67,366)( 68,365)( 69,364)( 70,363)( 71,362)( 72,361)
( 73,360)( 74,359)( 75,358)( 76,357)( 77,356)( 78,355)( 79,354)( 80,353)
( 81,352)( 82,244)( 83,246)( 84,245)( 85,252)( 86,251)( 87,250)( 88,249)
( 89,248)( 90,247)( 91,270)( 92,269)( 93,268)( 94,267)( 95,266)( 96,265)
( 97,264)( 98,263)( 99,262)(100,261)(101,260)(102,259)(103,258)(104,257)
(105,256)(106,255)(107,254)(108,253)(109,324)(110,323)(111,322)(112,321)
(113,320)(114,319)(115,318)(116,317)(117,316)(118,315)(119,314)(120,313)
(121,312)(122,311)(123,310)(124,309)(125,308)(126,307)(127,306)(128,305)
(129,304)(130,303)(131,302)(132,301)(133,300)(134,299)(135,298)(136,297)
(137,296)(138,295)(139,294)(140,293)(141,292)(142,291)(143,290)(144,289)
(145,288)(146,287)(147,286)(148,285)(149,284)(150,283)(151,282)(152,281)
(153,280)(154,279)(155,278)(156,277)(157,276)(158,275)(159,274)(160,273)
(161,272)(162,271)(163,486)(164,485)(165,484)(166,483)(167,482)(168,481)
(169,480)(170,479)(171,478)(172,477)(173,476)(174,475)(175,474)(176,473)
(177,472)(178,471)(179,470)(180,469)(181,468)(182,467)(183,466)(184,465)
(185,464)(186,463)(187,462)(188,461)(189,460)(190,459)(191,458)(192,457)
(193,456)(194,455)(195,454)(196,453)(197,452)(198,451)(199,450)(200,449)
(201,448)(202,447)(203,446)(204,445)(205,444)(206,443)(207,442)(208,441)
(209,440)(210,439)(211,438)(212,437)(213,436)(214,435)(215,434)(216,433)
(217,432)(218,431)(219,430)(220,429)(221,428)(222,427)(223,426)(224,425)
(225,424)(226,423)(227,422)(228,421)(229,420)(230,419)(231,418)(232,417)
(233,416)(234,415)(235,414)(236,413)(237,412)(238,411)(239,410)(240,409)
(241,408)(242,407)(243,406);;
poly := Group([s0,s1]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;;  s1 := F.2;;  
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(486)!(  2,  3)(  4,  9)(  5,  8)(  6,  7)( 10, 27)( 11, 26)( 12, 25)
( 13, 24)( 14, 23)( 15, 22)( 16, 21)( 17, 20)( 18, 19)( 28, 81)( 29, 80)
( 30, 79)( 31, 78)( 32, 77)( 33, 76)( 34, 75)( 35, 74)( 36, 73)( 37, 72)
( 38, 71)( 39, 70)( 40, 69)( 41, 68)( 42, 67)( 43, 66)( 44, 65)( 45, 64)
( 46, 63)( 47, 62)( 48, 61)( 49, 60)( 50, 59)( 51, 58)( 52, 57)( 53, 56)
( 54, 55)( 82,243)( 83,242)( 84,241)( 85,240)( 86,239)( 87,238)( 88,237)
( 89,236)( 90,235)( 91,234)( 92,233)( 93,232)( 94,231)( 95,230)( 96,229)
( 97,228)( 98,227)( 99,226)(100,225)(101,224)(102,223)(103,222)(104,221)
(105,220)(106,219)(107,218)(108,217)(109,216)(110,215)(111,214)(112,213)
(113,212)(114,211)(115,210)(116,209)(117,208)(118,207)(119,206)(120,205)
(121,204)(122,203)(123,202)(124,201)(125,200)(126,199)(127,198)(128,197)
(129,196)(130,195)(131,194)(132,193)(133,192)(134,191)(135,190)(136,189)
(137,188)(138,187)(139,186)(140,185)(141,184)(142,183)(143,182)(144,181)
(145,180)(146,179)(147,178)(148,177)(149,176)(150,175)(151,174)(152,173)
(153,172)(154,171)(155,170)(156,169)(157,168)(158,167)(159,166)(160,165)
(161,164)(162,163)(245,246)(247,252)(248,251)(249,250)(253,270)(254,269)
(255,268)(256,267)(257,266)(258,265)(259,264)(260,263)(261,262)(271,324)
(272,323)(273,322)(274,321)(275,320)(276,319)(277,318)(278,317)(279,316)
(280,315)(281,314)(282,313)(283,312)(284,311)(285,310)(286,309)(287,308)
(288,307)(289,306)(290,305)(291,304)(292,303)(293,302)(294,301)(295,300)
(296,299)(297,298)(325,486)(326,485)(327,484)(328,483)(329,482)(330,481)
(331,480)(332,479)(333,478)(334,477)(335,476)(336,475)(337,474)(338,473)
(339,472)(340,471)(341,470)(342,469)(343,468)(344,467)(345,466)(346,465)
(347,464)(348,463)(349,462)(350,461)(351,460)(352,459)(353,458)(354,457)
(355,456)(356,455)(357,454)(358,453)(359,452)(360,451)(361,450)(362,449)
(363,448)(364,447)(365,446)(366,445)(367,444)(368,443)(369,442)(370,441)
(371,440)(372,439)(373,438)(374,437)(375,436)(376,435)(377,434)(378,433)
(379,432)(380,431)(381,430)(382,429)(383,428)(384,427)(385,426)(386,425)
(387,424)(388,423)(389,422)(390,421)(391,420)(392,419)(393,418)(394,417)
(395,416)(396,415)(397,414)(398,413)(399,412)(400,411)(401,410)(402,409)
(403,408)(404,407)(405,406);
s1 := Sym(486)!(  1,325)(  2,327)(  3,326)(  4,333)(  5,332)(  6,331)(  7,330)
(  8,329)(  9,328)( 10,351)( 11,350)( 12,349)( 13,348)( 14,347)( 15,346)
( 16,345)( 17,344)( 18,343)( 19,342)( 20,341)( 21,340)( 22,339)( 23,338)
( 24,337)( 25,336)( 26,335)( 27,334)( 28,405)( 29,404)( 30,403)( 31,402)
( 32,401)( 33,400)( 34,399)( 35,398)( 36,397)( 37,396)( 38,395)( 39,394)
( 40,393)( 41,392)( 42,391)( 43,390)( 44,389)( 45,388)( 46,387)( 47,386)
( 48,385)( 49,384)( 50,383)( 51,382)( 52,381)( 53,380)( 54,379)( 55,378)
( 56,377)( 57,376)( 58,375)( 59,374)( 60,373)( 61,372)( 62,371)( 63,370)
( 64,369)( 65,368)( 66,367)( 67,366)( 68,365)( 69,364)( 70,363)( 71,362)
( 72,361)( 73,360)( 74,359)( 75,358)( 76,357)( 77,356)( 78,355)( 79,354)
( 80,353)( 81,352)( 82,244)( 83,246)( 84,245)( 85,252)( 86,251)( 87,250)
( 88,249)( 89,248)( 90,247)( 91,270)( 92,269)( 93,268)( 94,267)( 95,266)
( 96,265)( 97,264)( 98,263)( 99,262)(100,261)(101,260)(102,259)(103,258)
(104,257)(105,256)(106,255)(107,254)(108,253)(109,324)(110,323)(111,322)
(112,321)(113,320)(114,319)(115,318)(116,317)(117,316)(118,315)(119,314)
(120,313)(121,312)(122,311)(123,310)(124,309)(125,308)(126,307)(127,306)
(128,305)(129,304)(130,303)(131,302)(132,301)(133,300)(134,299)(135,298)
(136,297)(137,296)(138,295)(139,294)(140,293)(141,292)(142,291)(143,290)
(144,289)(145,288)(146,287)(147,286)(148,285)(149,284)(150,283)(151,282)
(152,281)(153,280)(154,279)(155,278)(156,277)(157,276)(158,275)(159,274)
(160,273)(161,272)(162,271)(163,486)(164,485)(165,484)(166,483)(167,482)
(168,481)(169,480)(170,479)(171,478)(172,477)(173,476)(174,475)(175,474)
(176,473)(177,472)(178,471)(179,470)(180,469)(181,468)(182,467)(183,466)
(184,465)(185,464)(186,463)(187,462)(188,461)(189,460)(190,459)(191,458)
(192,457)(193,456)(194,455)(195,454)(196,453)(197,452)(198,451)(199,450)
(200,449)(201,448)(202,447)(203,446)(204,445)(205,444)(206,443)(207,442)
(208,441)(209,440)(210,439)(211,438)(212,437)(213,436)(214,435)(215,434)
(216,433)(217,432)(218,431)(219,430)(220,429)(221,428)(222,427)(223,426)
(224,425)(225,424)(226,423)(227,422)(228,421)(229,420)(230,419)(231,418)
(232,417)(233,416)(234,415)(235,414)(236,413)(237,412)(238,411)(239,410)
(240,409)(241,408)(242,407)(243,406);
poly := sub<Sym(486)|s0,s1>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope