include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,27}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,27}*108
if this polytope has a name.
Group : SmallGroup(108,4)
Rank : 3
Schlafli Type : {2,27}
Number of vertices, edges, etc : 2, 27, 27
Order of s0s1s2 : 54
Order of s0s1s2s1 : 2
Special Properties :
Degenerate
Universal
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,27,2} of size 216
{2,27,4} of size 432
{2,27,6} of size 648
{2,27,4} of size 864
{2,27,8} of size 1728
{2,27,18} of size 1944
{2,27,6} of size 1944
{2,27,6} of size 1944
{2,27,6} of size 1944
Vertex Figure Of :
{2,2,27} of size 216
{3,2,27} of size 324
{4,2,27} of size 432
{5,2,27} of size 540
{6,2,27} of size 648
{7,2,27} of size 756
{8,2,27} of size 864
{9,2,27} of size 972
{10,2,27} of size 1080
{11,2,27} of size 1188
{12,2,27} of size 1296
{13,2,27} of size 1404
{14,2,27} of size 1512
{15,2,27} of size 1620
{16,2,27} of size 1728
{17,2,27} of size 1836
{18,2,27} of size 1944
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {2,9}*36
9-fold quotients : {2,3}*12
Covers (Minimal Covers in Boldface) :
2-fold covers : {2,54}*216
3-fold covers : {2,81}*324, {6,27}*324
4-fold covers : {2,108}*432, {4,54}*432a, {4,27}*432
5-fold covers : {2,135}*540
6-fold covers : {2,162}*648, {6,54}*648a, {6,54}*648b
7-fold covers : {2,189}*756
8-fold covers : {4,108}*864a, {2,216}*864, {8,54}*864, {8,27}*864, {4,54}*864
9-fold covers : {2,243}*972, {18,27}*972, {6,27}*972a, {6,81}*972
10-fold covers : {10,54}*1080, {2,270}*1080
11-fold covers : {2,297}*1188
12-fold covers : {2,324}*1296, {4,162}*1296a, {4,81}*1296, {12,54}*1296a, {6,108}*1296a, {6,108}*1296b, {12,54}*1296b, {6,27}*1296, {12,27}*1296
13-fold covers : {2,351}*1404
14-fold covers : {14,54}*1512, {2,378}*1512
15-fold covers : {2,405}*1620, {6,135}*1620
16-fold covers : {4,216}*1728a, {4,108}*1728a, {4,216}*1728b, {8,108}*1728a, {8,108}*1728b, {2,432}*1728, {16,54}*1728, {8,27}*1728, {4,108}*1728b, {4,54}*1728b, {4,108}*1728c, {8,54}*1728b, {8,54}*1728c
17-fold covers : {2,459}*1836
18-fold covers : {2,486}*1944, {18,54}*1944a, {18,54}*1944b, {6,54}*1944a, {6,54}*1944b, {6,162}*1944a, {6,162}*1944b, {6,54}*1944g
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21)(22,23)
(24,25)(26,27)(28,29);;
s2 := ( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)
(23,24)(25,26)(27,28);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s1*s0*s1, s0*s2*s0*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(29)!(1,2);
s1 := Sym(29)!( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21)
(22,23)(24,25)(26,27)(28,29);
s2 := Sym(29)!( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)
(21,22)(23,24)(25,26)(27,28);
poly := sub<Sym(29)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope