include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,18}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,18}*1944q
if this polytope has a name.
Group : SmallGroup(1944,2344)
Rank : 3
Schlafli Type : {6,18}
Number of vertices, edges, etc : 54, 486, 162
Order of s0s1s2 : 6
Order of s0s1s2s1 : 6
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {6,18}*648d, {6,6}*648f
6-fold quotients : {6,9}*324b
9-fold quotients : {6,6}*216a, {6,6}*216d
18-fold quotients : {6,3}*108
27-fold quotients : {6,6}*72a, {6,6}*72b, {6,6}*72c
54-fold quotients : {3,6}*36, {6,3}*36
81-fold quotients : {2,6}*24, {6,2}*24
162-fold quotients : {2,3}*12, {3,2}*12
243-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 7)( 5, 9)( 6, 8)(10,19)(11,21)(12,20)(13,25)(14,27)(15,26)
(16,22)(17,24)(18,23)(28,55)(29,57)(30,56)(31,61)(32,63)(33,62)(34,58)(35,60)
(36,59)(37,73)(38,75)(39,74)(40,79)(41,81)(42,80)(43,76)(44,78)(45,77)(46,64)
(47,66)(48,65)(49,70)(50,72)(51,71)(52,67)(53,69)(54,68);;
s1 := ( 1,37)( 2,39)( 3,38)( 4,40)( 5,42)( 6,41)( 7,43)( 8,45)( 9,44)(10,28)
(11,30)(12,29)(13,31)(14,33)(15,32)(16,34)(17,36)(18,35)(19,46)(20,48)(21,47)
(22,49)(23,51)(24,50)(25,52)(26,54)(27,53)(55,64)(56,66)(57,65)(58,67)(59,69)
(60,68)(61,70)(62,72)(63,71)(74,75)(77,78)(80,81);;
s2 := ( 2, 3)( 4, 6)( 7, 8)(10,27)(11,26)(12,25)(13,20)(14,19)(15,21)(16,22)
(17,24)(18,23)(29,30)(31,33)(34,35)(37,54)(38,53)(39,52)(40,47)(41,46)(42,48)
(43,49)(44,51)(45,50)(56,57)(58,60)(61,62)(64,81)(65,80)(66,79)(67,74)(68,73)
(69,75)(70,76)(71,78)(72,77);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s2*s0*s1*s2*s1*s2*s1*s0*s1*s0*s1*s0*s2*s1*s2*s1*s2*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(81)!( 2, 3)( 4, 7)( 5, 9)( 6, 8)(10,19)(11,21)(12,20)(13,25)(14,27)
(15,26)(16,22)(17,24)(18,23)(28,55)(29,57)(30,56)(31,61)(32,63)(33,62)(34,58)
(35,60)(36,59)(37,73)(38,75)(39,74)(40,79)(41,81)(42,80)(43,76)(44,78)(45,77)
(46,64)(47,66)(48,65)(49,70)(50,72)(51,71)(52,67)(53,69)(54,68);
s1 := Sym(81)!( 1,37)( 2,39)( 3,38)( 4,40)( 5,42)( 6,41)( 7,43)( 8,45)( 9,44)
(10,28)(11,30)(12,29)(13,31)(14,33)(15,32)(16,34)(17,36)(18,35)(19,46)(20,48)
(21,47)(22,49)(23,51)(24,50)(25,52)(26,54)(27,53)(55,64)(56,66)(57,65)(58,67)
(59,69)(60,68)(61,70)(62,72)(63,71)(74,75)(77,78)(80,81);
s2 := Sym(81)!( 2, 3)( 4, 6)( 7, 8)(10,27)(11,26)(12,25)(13,20)(14,19)(15,21)
(16,22)(17,24)(18,23)(29,30)(31,33)(34,35)(37,54)(38,53)(39,52)(40,47)(41,46)
(42,48)(43,49)(44,51)(45,50)(56,57)(58,60)(61,62)(64,81)(65,80)(66,79)(67,74)
(68,73)(69,75)(70,76)(71,78)(72,77);
poly := sub<Sym(81)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s2*s0*s1*s2*s1*s2*s1*s0*s1*s0*s1*s0*s2*s1*s2*s1*s2*s1*s0*s1*s0*s1 >;
References : None.
to this polytope