Polytope of Type {6,18}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,18}*1944r
if this polytope has a name.
Group : SmallGroup(1944,2345)
Rank : 3
Schlafli Type : {6,18}
Number of vertices, edges, etc : 54, 486, 162
Order of s0s1s2 : 18
Order of s0s1s2s1 : 6
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {6,18}*648e, {6,6}*648f
   6-fold quotients : {6,9}*324d
   9-fold quotients : {6,6}*216a, {6,6}*216d
   18-fold quotients : {6,3}*108
   27-fold quotients : {6,6}*72a, {6,6}*72b, {6,6}*72c
   54-fold quotients : {3,6}*36, {6,3}*36
   81-fold quotients : {2,6}*24, {6,2}*24
   162-fold quotients : {2,3}*12, {3,2}*12
   243-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 4, 7)( 5, 8)( 6, 9)(13,16)(14,17)(15,18)(22,25)(23,26)(24,27)(28,55)
(29,56)(30,57)(31,61)(32,62)(33,63)(34,58)(35,59)(36,60)(37,64)(38,65)(39,66)
(40,70)(41,71)(42,72)(43,67)(44,68)(45,69)(46,73)(47,74)(48,75)(49,79)(50,80)
(51,81)(52,76)(53,77)(54,78);;
s1 := ( 1,28)( 2,30)( 3,29)( 4,33)( 5,32)( 6,31)( 7,35)( 8,34)( 9,36)(10,52)
(11,54)(12,53)(13,48)(14,47)(15,46)(16,50)(17,49)(18,51)(19,42)(20,41)(21,40)
(22,44)(23,43)(24,45)(25,37)(26,39)(27,38)(56,57)(58,60)(61,62)(64,79)(65,81)
(66,80)(67,75)(68,74)(69,73)(70,77)(71,76)(72,78);;
s2 := ( 1,10)( 2,12)( 3,11)( 4,13)( 5,15)( 6,14)( 7,16)( 8,18)( 9,17)(19,20)
(22,23)(25,26)(28,37)(29,39)(30,38)(31,40)(32,42)(33,41)(34,43)(35,45)(36,44)
(46,47)(49,50)(52,53)(55,64)(56,66)(57,65)(58,67)(59,69)(60,68)(61,70)(62,72)
(63,71)(73,74)(76,77)(79,80);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1*s0*s1, 
s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(81)!( 4, 7)( 5, 8)( 6, 9)(13,16)(14,17)(15,18)(22,25)(23,26)(24,27)
(28,55)(29,56)(30,57)(31,61)(32,62)(33,63)(34,58)(35,59)(36,60)(37,64)(38,65)
(39,66)(40,70)(41,71)(42,72)(43,67)(44,68)(45,69)(46,73)(47,74)(48,75)(49,79)
(50,80)(51,81)(52,76)(53,77)(54,78);
s1 := Sym(81)!( 1,28)( 2,30)( 3,29)( 4,33)( 5,32)( 6,31)( 7,35)( 8,34)( 9,36)
(10,52)(11,54)(12,53)(13,48)(14,47)(15,46)(16,50)(17,49)(18,51)(19,42)(20,41)
(21,40)(22,44)(23,43)(24,45)(25,37)(26,39)(27,38)(56,57)(58,60)(61,62)(64,79)
(65,81)(66,80)(67,75)(68,74)(69,73)(70,77)(71,76)(72,78);
s2 := Sym(81)!( 1,10)( 2,12)( 3,11)( 4,13)( 5,15)( 6,14)( 7,16)( 8,18)( 9,17)
(19,20)(22,23)(25,26)(28,37)(29,39)(30,38)(31,40)(32,42)(33,41)(34,43)(35,45)
(36,44)(46,47)(49,50)(52,53)(55,64)(56,66)(57,65)(58,67)(59,69)(60,68)(61,70)
(62,72)(63,71)(73,74)(76,77)(79,80);
poly := sub<Sym(81)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1*s0*s1, 
s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1 >; 
 
References : None.
to this polytope