Polytope of Type {6,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,6}*1944j
if this polytope has a name.
Group : SmallGroup(1944,2346)
Rank : 3
Schlafli Type : {6,6}
Number of vertices, edges, etc : 162, 486, 162
Order of s0s1s2 : 18
Order of s0s1s2s1 : 6
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {6,6}*648d, {6,6}*648e
   6-fold quotients : {3,6}*324
   9-fold quotients : {6,6}*216c, {6,6}*216d
   18-fold quotients : {3,6}*108
   27-fold quotients : {6,6}*72a, {6,6}*72b, {6,6}*72c
   54-fold quotients : {3,6}*36, {6,3}*36
   81-fold quotients : {2,6}*24, {6,2}*24
   162-fold quotients : {2,3}*12, {3,2}*12
   243-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 5, 6)( 8, 9)(10,20)(11,19)(12,21)(13,23)(14,22)(15,24)(16,26)
(17,25)(18,27)(29,30)(32,33)(35,36)(37,47)(38,46)(39,48)(40,50)(41,49)(42,51)
(43,53)(44,52)(45,54)(56,57)(59,60)(62,63)(64,74)(65,73)(66,75)(67,77)(68,76)
(69,78)(70,80)(71,79)(72,81);;
s1 := ( 1,13)( 2,15)( 3,14)( 4,18)( 5,17)( 6,16)( 7,11)( 8,10)( 9,12)(20,21)
(22,24)(25,26)(28,67)(29,69)(30,68)(31,72)(32,71)(33,70)(34,65)(35,64)(36,66)
(37,62)(38,61)(39,63)(40,55)(41,57)(42,56)(43,60)(44,59)(45,58)(46,73)(47,75)
(48,74)(49,78)(50,77)(51,76)(52,80)(53,79)(54,81);;
s2 := ( 1,28)( 2,29)( 3,30)( 4,34)( 5,35)( 6,36)( 7,31)( 8,32)( 9,33)(10,37)
(11,38)(12,39)(13,43)(14,44)(15,45)(16,40)(17,41)(18,42)(19,46)(20,47)(21,48)
(22,52)(23,53)(24,54)(25,49)(26,50)(27,51)(58,61)(59,62)(60,63)(67,70)(68,71)
(69,72)(76,79)(77,80)(78,81);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s2*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1*s0*s1, 
s2*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s2*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(81)!( 2, 3)( 5, 6)( 8, 9)(10,20)(11,19)(12,21)(13,23)(14,22)(15,24)
(16,26)(17,25)(18,27)(29,30)(32,33)(35,36)(37,47)(38,46)(39,48)(40,50)(41,49)
(42,51)(43,53)(44,52)(45,54)(56,57)(59,60)(62,63)(64,74)(65,73)(66,75)(67,77)
(68,76)(69,78)(70,80)(71,79)(72,81);
s1 := Sym(81)!( 1,13)( 2,15)( 3,14)( 4,18)( 5,17)( 6,16)( 7,11)( 8,10)( 9,12)
(20,21)(22,24)(25,26)(28,67)(29,69)(30,68)(31,72)(32,71)(33,70)(34,65)(35,64)
(36,66)(37,62)(38,61)(39,63)(40,55)(41,57)(42,56)(43,60)(44,59)(45,58)(46,73)
(47,75)(48,74)(49,78)(50,77)(51,76)(52,80)(53,79)(54,81);
s2 := Sym(81)!( 1,28)( 2,29)( 3,30)( 4,34)( 5,35)( 6,36)( 7,31)( 8,32)( 9,33)
(10,37)(11,38)(12,39)(13,43)(14,44)(15,45)(16,40)(17,41)(18,42)(19,46)(20,47)
(21,48)(22,52)(23,53)(24,54)(25,49)(26,50)(27,51)(58,61)(59,62)(60,63)(67,70)
(68,71)(69,72)(76,79)(77,80)(78,81);
poly := sub<Sym(81)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s2*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1*s0*s1, 
s2*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s2*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1 >; 
 
References : None.
to this polytope