include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {14,7}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {14,7}*196
if this polytope has a name.
Group : SmallGroup(196,9)
Rank : 3
Schlafli Type : {14,7}
Number of vertices, edges, etc : 14, 49, 7
Order of s0s1s2 : 14
Order of s0s1s2s1 : 14
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Self-Petrie
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
{14,7,2} of size 392
Vertex Figure Of :
{2,14,7} of size 392
{4,14,7} of size 784
{6,14,7} of size 1176
{7,14,7} of size 1372
{8,14,7} of size 1568
{10,14,7} of size 1960
Quotients (Maximal Quotients in Boldface) :
7-fold quotients : {2,7}*28
Covers (Minimal Covers in Boldface) :
2-fold covers : {14,14}*392b
3-fold covers : {14,21}*588
4-fold covers : {14,28}*784b, {28,14}*784c
5-fold covers : {14,35}*980
6-fold covers : {42,14}*1176a, {14,42}*1176c
7-fold covers : {14,49}*1372, {14,7}*1372
8-fold covers : {14,56}*1568b, {28,28}*1568b, {56,14}*1568c
9-fold covers : {14,63}*1764, {42,21}*1764
10-fold covers : {70,14}*1960a, {14,70}*1960c
Permutation Representation (GAP) :
s0 := ( 8,43)( 9,44)(10,45)(11,46)(12,47)(13,48)(14,49)(15,36)(16,37)(17,38)
(18,39)(19,40)(20,41)(21,42)(22,29)(23,30)(24,31)(25,32)(26,33)(27,34)
(28,35);;
s1 := ( 1, 8)( 2,14)( 3,13)( 4,12)( 5,11)( 6,10)( 7, 9)(15,43)(16,49)(17,48)
(18,47)(19,46)(20,45)(21,44)(22,36)(23,42)(24,41)(25,40)(26,39)(27,38)(28,37)
(30,35)(31,34)(32,33);;
s2 := ( 1, 2)( 3, 7)( 4, 6)( 8,44)( 9,43)(10,49)(11,48)(12,47)(13,46)(14,45)
(15,37)(16,36)(17,42)(18,41)(19,40)(20,39)(21,38)(22,30)(23,29)(24,35)(25,34)
(26,33)(27,32)(28,31);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s2*s0*s1*s0*s1*s2*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(49)!( 8,43)( 9,44)(10,45)(11,46)(12,47)(13,48)(14,49)(15,36)(16,37)
(17,38)(18,39)(19,40)(20,41)(21,42)(22,29)(23,30)(24,31)(25,32)(26,33)(27,34)
(28,35);
s1 := Sym(49)!( 1, 8)( 2,14)( 3,13)( 4,12)( 5,11)( 6,10)( 7, 9)(15,43)(16,49)
(17,48)(18,47)(19,46)(20,45)(21,44)(22,36)(23,42)(24,41)(25,40)(26,39)(27,38)
(28,37)(30,35)(31,34)(32,33);
s2 := Sym(49)!( 1, 2)( 3, 7)( 4, 6)( 8,44)( 9,43)(10,49)(11,48)(12,47)(13,46)
(14,45)(15,37)(16,36)(17,42)(18,41)(19,40)(20,39)(21,38)(22,30)(23,29)(24,35)
(25,34)(26,33)(27,32)(28,31);
poly := sub<Sym(49)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s2*s0*s1*s0*s1*s2*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
References : None.
to this polytope