include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,496}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,496}*1984
if this polytope has a name.
Group : SmallGroup(1984,970)
Rank : 3
Schlafli Type : {2,496}
Number of vertices, edges, etc : 2, 496, 496
Order of s0s1s2 : 496
Order of s0s1s2s1 : 2
Special Properties :
Degenerate
Universal
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,248}*992
4-fold quotients : {2,124}*496
8-fold quotients : {2,62}*248
16-fold quotients : {2,31}*124
31-fold quotients : {2,16}*64
62-fold quotients : {2,8}*32
124-fold quotients : {2,4}*16
248-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 33)( 5, 32)( 6, 31)( 7, 30)( 8, 29)( 9, 28)( 10, 27)( 11, 26)
( 12, 25)( 13, 24)( 14, 23)( 15, 22)( 16, 21)( 17, 20)( 18, 19)( 35, 64)
( 36, 63)( 37, 62)( 38, 61)( 39, 60)( 40, 59)( 41, 58)( 42, 57)( 43, 56)
( 44, 55)( 45, 54)( 46, 53)( 47, 52)( 48, 51)( 49, 50)( 65, 96)( 66,126)
( 67,125)( 68,124)( 69,123)( 70,122)( 71,121)( 72,120)( 73,119)( 74,118)
( 75,117)( 76,116)( 77,115)( 78,114)( 79,113)( 80,112)( 81,111)( 82,110)
( 83,109)( 84,108)( 85,107)( 86,106)( 87,105)( 88,104)( 89,103)( 90,102)
( 91,101)( 92,100)( 93, 99)( 94, 98)( 95, 97)(127,189)(128,219)(129,218)
(130,217)(131,216)(132,215)(133,214)(134,213)(135,212)(136,211)(137,210)
(138,209)(139,208)(140,207)(141,206)(142,205)(143,204)(144,203)(145,202)
(146,201)(147,200)(148,199)(149,198)(150,197)(151,196)(152,195)(153,194)
(154,193)(155,192)(156,191)(157,190)(158,220)(159,250)(160,249)(161,248)
(162,247)(163,246)(164,245)(165,244)(166,243)(167,242)(168,241)(169,240)
(170,239)(171,238)(172,237)(173,236)(174,235)(175,234)(176,233)(177,232)
(178,231)(179,230)(180,229)(181,228)(182,227)(183,226)(184,225)(185,224)
(186,223)(187,222)(188,221)(251,375)(252,405)(253,404)(254,403)(255,402)
(256,401)(257,400)(258,399)(259,398)(260,397)(261,396)(262,395)(263,394)
(264,393)(265,392)(266,391)(267,390)(268,389)(269,388)(270,387)(271,386)
(272,385)(273,384)(274,383)(275,382)(276,381)(277,380)(278,379)(279,378)
(280,377)(281,376)(282,406)(283,436)(284,435)(285,434)(286,433)(287,432)
(288,431)(289,430)(290,429)(291,428)(292,427)(293,426)(294,425)(295,424)
(296,423)(297,422)(298,421)(299,420)(300,419)(301,418)(302,417)(303,416)
(304,415)(305,414)(306,413)(307,412)(308,411)(309,410)(310,409)(311,408)
(312,407)(313,468)(314,498)(315,497)(316,496)(317,495)(318,494)(319,493)
(320,492)(321,491)(322,490)(323,489)(324,488)(325,487)(326,486)(327,485)
(328,484)(329,483)(330,482)(331,481)(332,480)(333,479)(334,478)(335,477)
(336,476)(337,475)(338,474)(339,473)(340,472)(341,471)(342,470)(343,469)
(344,437)(345,467)(346,466)(347,465)(348,464)(349,463)(350,462)(351,461)
(352,460)(353,459)(354,458)(355,457)(356,456)(357,455)(358,454)(359,453)
(360,452)(361,451)(362,450)(363,449)(364,448)(365,447)(366,446)(367,445)
(368,444)(369,443)(370,442)(371,441)(372,440)(373,439)(374,438);;
s2 := ( 3,252)( 4,251)( 5,281)( 6,280)( 7,279)( 8,278)( 9,277)( 10,276)
( 11,275)( 12,274)( 13,273)( 14,272)( 15,271)( 16,270)( 17,269)( 18,268)
( 19,267)( 20,266)( 21,265)( 22,264)( 23,263)( 24,262)( 25,261)( 26,260)
( 27,259)( 28,258)( 29,257)( 30,256)( 31,255)( 32,254)( 33,253)( 34,283)
( 35,282)( 36,312)( 37,311)( 38,310)( 39,309)( 40,308)( 41,307)( 42,306)
( 43,305)( 44,304)( 45,303)( 46,302)( 47,301)( 48,300)( 49,299)( 50,298)
( 51,297)( 52,296)( 53,295)( 54,294)( 55,293)( 56,292)( 57,291)( 58,290)
( 59,289)( 60,288)( 61,287)( 62,286)( 63,285)( 64,284)( 65,345)( 66,344)
( 67,374)( 68,373)( 69,372)( 70,371)( 71,370)( 72,369)( 73,368)( 74,367)
( 75,366)( 76,365)( 77,364)( 78,363)( 79,362)( 80,361)( 81,360)( 82,359)
( 83,358)( 84,357)( 85,356)( 86,355)( 87,354)( 88,353)( 89,352)( 90,351)
( 91,350)( 92,349)( 93,348)( 94,347)( 95,346)( 96,314)( 97,313)( 98,343)
( 99,342)(100,341)(101,340)(102,339)(103,338)(104,337)(105,336)(106,335)
(107,334)(108,333)(109,332)(110,331)(111,330)(112,329)(113,328)(114,327)
(115,326)(116,325)(117,324)(118,323)(119,322)(120,321)(121,320)(122,319)
(123,318)(124,317)(125,316)(126,315)(127,438)(128,437)(129,467)(130,466)
(131,465)(132,464)(133,463)(134,462)(135,461)(136,460)(137,459)(138,458)
(139,457)(140,456)(141,455)(142,454)(143,453)(144,452)(145,451)(146,450)
(147,449)(148,448)(149,447)(150,446)(151,445)(152,444)(153,443)(154,442)
(155,441)(156,440)(157,439)(158,469)(159,468)(160,498)(161,497)(162,496)
(163,495)(164,494)(165,493)(166,492)(167,491)(168,490)(169,489)(170,488)
(171,487)(172,486)(173,485)(174,484)(175,483)(176,482)(177,481)(178,480)
(179,479)(180,478)(181,477)(182,476)(183,475)(184,474)(185,473)(186,472)
(187,471)(188,470)(189,376)(190,375)(191,405)(192,404)(193,403)(194,402)
(195,401)(196,400)(197,399)(198,398)(199,397)(200,396)(201,395)(202,394)
(203,393)(204,392)(205,391)(206,390)(207,389)(208,388)(209,387)(210,386)
(211,385)(212,384)(213,383)(214,382)(215,381)(216,380)(217,379)(218,378)
(219,377)(220,407)(221,406)(222,436)(223,435)(224,434)(225,433)(226,432)
(227,431)(228,430)(229,429)(230,428)(231,427)(232,426)(233,425)(234,424)
(235,423)(236,422)(237,421)(238,420)(239,419)(240,418)(241,417)(242,416)
(243,415)(244,414)(245,413)(246,412)(247,411)(248,410)(249,409)(250,408);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s1*s0*s1, s0*s2*s0*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(498)!(1,2);
s1 := Sym(498)!( 4, 33)( 5, 32)( 6, 31)( 7, 30)( 8, 29)( 9, 28)( 10, 27)
( 11, 26)( 12, 25)( 13, 24)( 14, 23)( 15, 22)( 16, 21)( 17, 20)( 18, 19)
( 35, 64)( 36, 63)( 37, 62)( 38, 61)( 39, 60)( 40, 59)( 41, 58)( 42, 57)
( 43, 56)( 44, 55)( 45, 54)( 46, 53)( 47, 52)( 48, 51)( 49, 50)( 65, 96)
( 66,126)( 67,125)( 68,124)( 69,123)( 70,122)( 71,121)( 72,120)( 73,119)
( 74,118)( 75,117)( 76,116)( 77,115)( 78,114)( 79,113)( 80,112)( 81,111)
( 82,110)( 83,109)( 84,108)( 85,107)( 86,106)( 87,105)( 88,104)( 89,103)
( 90,102)( 91,101)( 92,100)( 93, 99)( 94, 98)( 95, 97)(127,189)(128,219)
(129,218)(130,217)(131,216)(132,215)(133,214)(134,213)(135,212)(136,211)
(137,210)(138,209)(139,208)(140,207)(141,206)(142,205)(143,204)(144,203)
(145,202)(146,201)(147,200)(148,199)(149,198)(150,197)(151,196)(152,195)
(153,194)(154,193)(155,192)(156,191)(157,190)(158,220)(159,250)(160,249)
(161,248)(162,247)(163,246)(164,245)(165,244)(166,243)(167,242)(168,241)
(169,240)(170,239)(171,238)(172,237)(173,236)(174,235)(175,234)(176,233)
(177,232)(178,231)(179,230)(180,229)(181,228)(182,227)(183,226)(184,225)
(185,224)(186,223)(187,222)(188,221)(251,375)(252,405)(253,404)(254,403)
(255,402)(256,401)(257,400)(258,399)(259,398)(260,397)(261,396)(262,395)
(263,394)(264,393)(265,392)(266,391)(267,390)(268,389)(269,388)(270,387)
(271,386)(272,385)(273,384)(274,383)(275,382)(276,381)(277,380)(278,379)
(279,378)(280,377)(281,376)(282,406)(283,436)(284,435)(285,434)(286,433)
(287,432)(288,431)(289,430)(290,429)(291,428)(292,427)(293,426)(294,425)
(295,424)(296,423)(297,422)(298,421)(299,420)(300,419)(301,418)(302,417)
(303,416)(304,415)(305,414)(306,413)(307,412)(308,411)(309,410)(310,409)
(311,408)(312,407)(313,468)(314,498)(315,497)(316,496)(317,495)(318,494)
(319,493)(320,492)(321,491)(322,490)(323,489)(324,488)(325,487)(326,486)
(327,485)(328,484)(329,483)(330,482)(331,481)(332,480)(333,479)(334,478)
(335,477)(336,476)(337,475)(338,474)(339,473)(340,472)(341,471)(342,470)
(343,469)(344,437)(345,467)(346,466)(347,465)(348,464)(349,463)(350,462)
(351,461)(352,460)(353,459)(354,458)(355,457)(356,456)(357,455)(358,454)
(359,453)(360,452)(361,451)(362,450)(363,449)(364,448)(365,447)(366,446)
(367,445)(368,444)(369,443)(370,442)(371,441)(372,440)(373,439)(374,438);
s2 := Sym(498)!( 3,252)( 4,251)( 5,281)( 6,280)( 7,279)( 8,278)( 9,277)
( 10,276)( 11,275)( 12,274)( 13,273)( 14,272)( 15,271)( 16,270)( 17,269)
( 18,268)( 19,267)( 20,266)( 21,265)( 22,264)( 23,263)( 24,262)( 25,261)
( 26,260)( 27,259)( 28,258)( 29,257)( 30,256)( 31,255)( 32,254)( 33,253)
( 34,283)( 35,282)( 36,312)( 37,311)( 38,310)( 39,309)( 40,308)( 41,307)
( 42,306)( 43,305)( 44,304)( 45,303)( 46,302)( 47,301)( 48,300)( 49,299)
( 50,298)( 51,297)( 52,296)( 53,295)( 54,294)( 55,293)( 56,292)( 57,291)
( 58,290)( 59,289)( 60,288)( 61,287)( 62,286)( 63,285)( 64,284)( 65,345)
( 66,344)( 67,374)( 68,373)( 69,372)( 70,371)( 71,370)( 72,369)( 73,368)
( 74,367)( 75,366)( 76,365)( 77,364)( 78,363)( 79,362)( 80,361)( 81,360)
( 82,359)( 83,358)( 84,357)( 85,356)( 86,355)( 87,354)( 88,353)( 89,352)
( 90,351)( 91,350)( 92,349)( 93,348)( 94,347)( 95,346)( 96,314)( 97,313)
( 98,343)( 99,342)(100,341)(101,340)(102,339)(103,338)(104,337)(105,336)
(106,335)(107,334)(108,333)(109,332)(110,331)(111,330)(112,329)(113,328)
(114,327)(115,326)(116,325)(117,324)(118,323)(119,322)(120,321)(121,320)
(122,319)(123,318)(124,317)(125,316)(126,315)(127,438)(128,437)(129,467)
(130,466)(131,465)(132,464)(133,463)(134,462)(135,461)(136,460)(137,459)
(138,458)(139,457)(140,456)(141,455)(142,454)(143,453)(144,452)(145,451)
(146,450)(147,449)(148,448)(149,447)(150,446)(151,445)(152,444)(153,443)
(154,442)(155,441)(156,440)(157,439)(158,469)(159,468)(160,498)(161,497)
(162,496)(163,495)(164,494)(165,493)(166,492)(167,491)(168,490)(169,489)
(170,488)(171,487)(172,486)(173,485)(174,484)(175,483)(176,482)(177,481)
(178,480)(179,479)(180,478)(181,477)(182,476)(183,475)(184,474)(185,473)
(186,472)(187,471)(188,470)(189,376)(190,375)(191,405)(192,404)(193,403)
(194,402)(195,401)(196,400)(197,399)(198,398)(199,397)(200,396)(201,395)
(202,394)(203,393)(204,392)(205,391)(206,390)(207,389)(208,388)(209,387)
(210,386)(211,385)(212,384)(213,383)(214,382)(215,381)(216,380)(217,379)
(218,378)(219,377)(220,407)(221,406)(222,436)(223,435)(224,434)(225,433)
(226,432)(227,431)(228,430)(229,429)(230,428)(231,427)(232,426)(233,425)
(234,424)(235,423)(236,422)(237,421)(238,420)(239,419)(240,418)(241,417)
(242,416)(243,415)(244,414)(245,413)(246,412)(247,411)(248,410)(249,409)
(250,408);
poly := sub<Sym(498)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope