include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {496}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {496}*992
Also Known As : 496-gon, {496}. if this polytope has another name.
Group : SmallGroup(992,5)
Rank : 2
Schlafli Type : {496}
Number of vertices, edges, etc : 496, 496
Order of s0s1 : 496
Special Properties :
Universal
Spherical
Locally Spherical
Orientable
Self-Dual
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{496,2} of size 1984
Vertex Figure Of :
{2,496} of size 1984
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {248}*496
4-fold quotients : {124}*248
8-fold quotients : {62}*124
16-fold quotients : {31}*62
31-fold quotients : {16}*32
62-fold quotients : {8}*16
124-fold quotients : {4}*8
248-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
2-fold covers : {992}*1984
Permutation Representation (GAP) :
s0 := ( 2, 31)( 3, 30)( 4, 29)( 5, 28)( 6, 27)( 7, 26)( 8, 25)( 9, 24)
( 10, 23)( 11, 22)( 12, 21)( 13, 20)( 14, 19)( 15, 18)( 16, 17)( 33, 62)
( 34, 61)( 35, 60)( 36, 59)( 37, 58)( 38, 57)( 39, 56)( 40, 55)( 41, 54)
( 42, 53)( 43, 52)( 44, 51)( 45, 50)( 46, 49)( 47, 48)( 63, 94)( 64,124)
( 65,123)( 66,122)( 67,121)( 68,120)( 69,119)( 70,118)( 71,117)( 72,116)
( 73,115)( 74,114)( 75,113)( 76,112)( 77,111)( 78,110)( 79,109)( 80,108)
( 81,107)( 82,106)( 83,105)( 84,104)( 85,103)( 86,102)( 87,101)( 88,100)
( 89, 99)( 90, 98)( 91, 97)( 92, 96)( 93, 95)(125,187)(126,217)(127,216)
(128,215)(129,214)(130,213)(131,212)(132,211)(133,210)(134,209)(135,208)
(136,207)(137,206)(138,205)(139,204)(140,203)(141,202)(142,201)(143,200)
(144,199)(145,198)(146,197)(147,196)(148,195)(149,194)(150,193)(151,192)
(152,191)(153,190)(154,189)(155,188)(156,218)(157,248)(158,247)(159,246)
(160,245)(161,244)(162,243)(163,242)(164,241)(165,240)(166,239)(167,238)
(168,237)(169,236)(170,235)(171,234)(172,233)(173,232)(174,231)(175,230)
(176,229)(177,228)(178,227)(179,226)(180,225)(181,224)(182,223)(183,222)
(184,221)(185,220)(186,219)(249,373)(250,403)(251,402)(252,401)(253,400)
(254,399)(255,398)(256,397)(257,396)(258,395)(259,394)(260,393)(261,392)
(262,391)(263,390)(264,389)(265,388)(266,387)(267,386)(268,385)(269,384)
(270,383)(271,382)(272,381)(273,380)(274,379)(275,378)(276,377)(277,376)
(278,375)(279,374)(280,404)(281,434)(282,433)(283,432)(284,431)(285,430)
(286,429)(287,428)(288,427)(289,426)(290,425)(291,424)(292,423)(293,422)
(294,421)(295,420)(296,419)(297,418)(298,417)(299,416)(300,415)(301,414)
(302,413)(303,412)(304,411)(305,410)(306,409)(307,408)(308,407)(309,406)
(310,405)(311,466)(312,496)(313,495)(314,494)(315,493)(316,492)(317,491)
(318,490)(319,489)(320,488)(321,487)(322,486)(323,485)(324,484)(325,483)
(326,482)(327,481)(328,480)(329,479)(330,478)(331,477)(332,476)(333,475)
(334,474)(335,473)(336,472)(337,471)(338,470)(339,469)(340,468)(341,467)
(342,435)(343,465)(344,464)(345,463)(346,462)(347,461)(348,460)(349,459)
(350,458)(351,457)(352,456)(353,455)(354,454)(355,453)(356,452)(357,451)
(358,450)(359,449)(360,448)(361,447)(362,446)(363,445)(364,444)(365,443)
(366,442)(367,441)(368,440)(369,439)(370,438)(371,437)(372,436);;
s1 := ( 1,250)( 2,249)( 3,279)( 4,278)( 5,277)( 6,276)( 7,275)( 8,274)
( 9,273)( 10,272)( 11,271)( 12,270)( 13,269)( 14,268)( 15,267)( 16,266)
( 17,265)( 18,264)( 19,263)( 20,262)( 21,261)( 22,260)( 23,259)( 24,258)
( 25,257)( 26,256)( 27,255)( 28,254)( 29,253)( 30,252)( 31,251)( 32,281)
( 33,280)( 34,310)( 35,309)( 36,308)( 37,307)( 38,306)( 39,305)( 40,304)
( 41,303)( 42,302)( 43,301)( 44,300)( 45,299)( 46,298)( 47,297)( 48,296)
( 49,295)( 50,294)( 51,293)( 52,292)( 53,291)( 54,290)( 55,289)( 56,288)
( 57,287)( 58,286)( 59,285)( 60,284)( 61,283)( 62,282)( 63,343)( 64,342)
( 65,372)( 66,371)( 67,370)( 68,369)( 69,368)( 70,367)( 71,366)( 72,365)
( 73,364)( 74,363)( 75,362)( 76,361)( 77,360)( 78,359)( 79,358)( 80,357)
( 81,356)( 82,355)( 83,354)( 84,353)( 85,352)( 86,351)( 87,350)( 88,349)
( 89,348)( 90,347)( 91,346)( 92,345)( 93,344)( 94,312)( 95,311)( 96,341)
( 97,340)( 98,339)( 99,338)(100,337)(101,336)(102,335)(103,334)(104,333)
(105,332)(106,331)(107,330)(108,329)(109,328)(110,327)(111,326)(112,325)
(113,324)(114,323)(115,322)(116,321)(117,320)(118,319)(119,318)(120,317)
(121,316)(122,315)(123,314)(124,313)(125,436)(126,435)(127,465)(128,464)
(129,463)(130,462)(131,461)(132,460)(133,459)(134,458)(135,457)(136,456)
(137,455)(138,454)(139,453)(140,452)(141,451)(142,450)(143,449)(144,448)
(145,447)(146,446)(147,445)(148,444)(149,443)(150,442)(151,441)(152,440)
(153,439)(154,438)(155,437)(156,467)(157,466)(158,496)(159,495)(160,494)
(161,493)(162,492)(163,491)(164,490)(165,489)(166,488)(167,487)(168,486)
(169,485)(170,484)(171,483)(172,482)(173,481)(174,480)(175,479)(176,478)
(177,477)(178,476)(179,475)(180,474)(181,473)(182,472)(183,471)(184,470)
(185,469)(186,468)(187,374)(188,373)(189,403)(190,402)(191,401)(192,400)
(193,399)(194,398)(195,397)(196,396)(197,395)(198,394)(199,393)(200,392)
(201,391)(202,390)(203,389)(204,388)(205,387)(206,386)(207,385)(208,384)
(209,383)(210,382)(211,381)(212,380)(213,379)(214,378)(215,377)(216,376)
(217,375)(218,405)(219,404)(220,434)(221,433)(222,432)(223,431)(224,430)
(225,429)(226,428)(227,427)(228,426)(229,425)(230,424)(231,423)(232,422)
(233,421)(234,420)(235,419)(236,418)(237,417)(238,416)(239,415)(240,414)
(241,413)(242,412)(243,411)(244,410)(245,409)(246,408)(247,407)(248,406);;
poly := Group([s0,s1]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;; s1 := F.2;;
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(496)!( 2, 31)( 3, 30)( 4, 29)( 5, 28)( 6, 27)( 7, 26)( 8, 25)
( 9, 24)( 10, 23)( 11, 22)( 12, 21)( 13, 20)( 14, 19)( 15, 18)( 16, 17)
( 33, 62)( 34, 61)( 35, 60)( 36, 59)( 37, 58)( 38, 57)( 39, 56)( 40, 55)
( 41, 54)( 42, 53)( 43, 52)( 44, 51)( 45, 50)( 46, 49)( 47, 48)( 63, 94)
( 64,124)( 65,123)( 66,122)( 67,121)( 68,120)( 69,119)( 70,118)( 71,117)
( 72,116)( 73,115)( 74,114)( 75,113)( 76,112)( 77,111)( 78,110)( 79,109)
( 80,108)( 81,107)( 82,106)( 83,105)( 84,104)( 85,103)( 86,102)( 87,101)
( 88,100)( 89, 99)( 90, 98)( 91, 97)( 92, 96)( 93, 95)(125,187)(126,217)
(127,216)(128,215)(129,214)(130,213)(131,212)(132,211)(133,210)(134,209)
(135,208)(136,207)(137,206)(138,205)(139,204)(140,203)(141,202)(142,201)
(143,200)(144,199)(145,198)(146,197)(147,196)(148,195)(149,194)(150,193)
(151,192)(152,191)(153,190)(154,189)(155,188)(156,218)(157,248)(158,247)
(159,246)(160,245)(161,244)(162,243)(163,242)(164,241)(165,240)(166,239)
(167,238)(168,237)(169,236)(170,235)(171,234)(172,233)(173,232)(174,231)
(175,230)(176,229)(177,228)(178,227)(179,226)(180,225)(181,224)(182,223)
(183,222)(184,221)(185,220)(186,219)(249,373)(250,403)(251,402)(252,401)
(253,400)(254,399)(255,398)(256,397)(257,396)(258,395)(259,394)(260,393)
(261,392)(262,391)(263,390)(264,389)(265,388)(266,387)(267,386)(268,385)
(269,384)(270,383)(271,382)(272,381)(273,380)(274,379)(275,378)(276,377)
(277,376)(278,375)(279,374)(280,404)(281,434)(282,433)(283,432)(284,431)
(285,430)(286,429)(287,428)(288,427)(289,426)(290,425)(291,424)(292,423)
(293,422)(294,421)(295,420)(296,419)(297,418)(298,417)(299,416)(300,415)
(301,414)(302,413)(303,412)(304,411)(305,410)(306,409)(307,408)(308,407)
(309,406)(310,405)(311,466)(312,496)(313,495)(314,494)(315,493)(316,492)
(317,491)(318,490)(319,489)(320,488)(321,487)(322,486)(323,485)(324,484)
(325,483)(326,482)(327,481)(328,480)(329,479)(330,478)(331,477)(332,476)
(333,475)(334,474)(335,473)(336,472)(337,471)(338,470)(339,469)(340,468)
(341,467)(342,435)(343,465)(344,464)(345,463)(346,462)(347,461)(348,460)
(349,459)(350,458)(351,457)(352,456)(353,455)(354,454)(355,453)(356,452)
(357,451)(358,450)(359,449)(360,448)(361,447)(362,446)(363,445)(364,444)
(365,443)(366,442)(367,441)(368,440)(369,439)(370,438)(371,437)(372,436);
s1 := Sym(496)!( 1,250)( 2,249)( 3,279)( 4,278)( 5,277)( 6,276)( 7,275)
( 8,274)( 9,273)( 10,272)( 11,271)( 12,270)( 13,269)( 14,268)( 15,267)
( 16,266)( 17,265)( 18,264)( 19,263)( 20,262)( 21,261)( 22,260)( 23,259)
( 24,258)( 25,257)( 26,256)( 27,255)( 28,254)( 29,253)( 30,252)( 31,251)
( 32,281)( 33,280)( 34,310)( 35,309)( 36,308)( 37,307)( 38,306)( 39,305)
( 40,304)( 41,303)( 42,302)( 43,301)( 44,300)( 45,299)( 46,298)( 47,297)
( 48,296)( 49,295)( 50,294)( 51,293)( 52,292)( 53,291)( 54,290)( 55,289)
( 56,288)( 57,287)( 58,286)( 59,285)( 60,284)( 61,283)( 62,282)( 63,343)
( 64,342)( 65,372)( 66,371)( 67,370)( 68,369)( 69,368)( 70,367)( 71,366)
( 72,365)( 73,364)( 74,363)( 75,362)( 76,361)( 77,360)( 78,359)( 79,358)
( 80,357)( 81,356)( 82,355)( 83,354)( 84,353)( 85,352)( 86,351)( 87,350)
( 88,349)( 89,348)( 90,347)( 91,346)( 92,345)( 93,344)( 94,312)( 95,311)
( 96,341)( 97,340)( 98,339)( 99,338)(100,337)(101,336)(102,335)(103,334)
(104,333)(105,332)(106,331)(107,330)(108,329)(109,328)(110,327)(111,326)
(112,325)(113,324)(114,323)(115,322)(116,321)(117,320)(118,319)(119,318)
(120,317)(121,316)(122,315)(123,314)(124,313)(125,436)(126,435)(127,465)
(128,464)(129,463)(130,462)(131,461)(132,460)(133,459)(134,458)(135,457)
(136,456)(137,455)(138,454)(139,453)(140,452)(141,451)(142,450)(143,449)
(144,448)(145,447)(146,446)(147,445)(148,444)(149,443)(150,442)(151,441)
(152,440)(153,439)(154,438)(155,437)(156,467)(157,466)(158,496)(159,495)
(160,494)(161,493)(162,492)(163,491)(164,490)(165,489)(166,488)(167,487)
(168,486)(169,485)(170,484)(171,483)(172,482)(173,481)(174,480)(175,479)
(176,478)(177,477)(178,476)(179,475)(180,474)(181,473)(182,472)(183,471)
(184,470)(185,469)(186,468)(187,374)(188,373)(189,403)(190,402)(191,401)
(192,400)(193,399)(194,398)(195,397)(196,396)(197,395)(198,394)(199,393)
(200,392)(201,391)(202,390)(203,389)(204,388)(205,387)(206,386)(207,385)
(208,384)(209,383)(210,382)(211,381)(212,380)(213,379)(214,378)(215,377)
(216,376)(217,375)(218,405)(219,404)(220,434)(221,433)(222,432)(223,431)
(224,430)(225,429)(226,428)(227,427)(228,426)(229,425)(230,424)(231,423)
(232,422)(233,421)(234,420)(235,419)(236,418)(237,417)(238,416)(239,415)
(240,414)(241,413)(242,412)(243,411)(244,410)(245,409)(246,408)(247,407)
(248,406);
poly := sub<Sym(496)|s0,s1>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope