include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,25,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,25,2}*200
if this polytope has a name.
Group : SmallGroup(200,13)
Rank : 4
Schlafli Type : {2,25,2}
Number of vertices, edges, etc : 2, 25, 25, 2
Order of s0s1s2s3 : 50
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Self-Dual
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,25,2,2} of size 400
{2,25,2,3} of size 600
{2,25,2,4} of size 800
{2,25,2,5} of size 1000
{2,25,2,6} of size 1200
{2,25,2,7} of size 1400
{2,25,2,8} of size 1600
{2,25,2,9} of size 1800
{2,25,2,10} of size 2000
Vertex Figure Of :
{2,2,25,2} of size 400
{3,2,25,2} of size 600
{4,2,25,2} of size 800
{5,2,25,2} of size 1000
{6,2,25,2} of size 1200
{7,2,25,2} of size 1400
{8,2,25,2} of size 1600
{9,2,25,2} of size 1800
{10,2,25,2} of size 2000
Quotients (Maximal Quotients in Boldface) :
5-fold quotients : {2,5,2}*40
Covers (Minimal Covers in Boldface) :
2-fold covers : {2,50,2}*400
3-fold covers : {2,75,2}*600
4-fold covers : {2,100,2}*800, {2,50,4}*800, {4,50,2}*800
5-fold covers : {2,125,2}*1000, {2,25,10}*1000, {10,25,2}*1000
6-fold covers : {2,50,6}*1200, {6,50,2}*1200, {2,150,2}*1200
7-fold covers : {2,175,2}*1400
8-fold covers : {2,100,4}*1600, {4,100,2}*1600, {4,50,4}*1600, {2,200,2}*1600, {2,50,8}*1600, {8,50,2}*1600
9-fold covers : {2,225,2}*1800, {2,75,6}*1800, {6,75,2}*1800
10-fold covers : {2,250,2}*2000, {2,50,10}*2000a, {2,50,10}*2000b, {10,50,2}*2000a, {10,50,2}*2000b
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21)(22,23)
(24,25)(26,27);;
s2 := ( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)
(23,24)(25,26);;
s3 := (28,29);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(29)!(1,2);
s1 := Sym(29)!( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21)
(22,23)(24,25)(26,27);
s2 := Sym(29)!( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)
(21,22)(23,24)(25,26);
s3 := Sym(29)!(28,29);
poly := sub<Sym(29)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope