include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,3,2,14}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,3,2,14}*336
if this polytope has a name.
Group : SmallGroup(336,219)
Rank : 5
Schlafli Type : {2,3,2,14}
Number of vertices, edges, etc : 2, 3, 3, 14, 14
Order of s0s1s2s3s4 : 42
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,3,2,14,2} of size 672
{2,3,2,14,4} of size 1344
Vertex Figure Of :
{2,2,3,2,14} of size 672
{3,2,3,2,14} of size 1008
{4,2,3,2,14} of size 1344
{5,2,3,2,14} of size 1680
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,3,2,7}*168
7-fold quotients : {2,3,2,2}*48
Covers (Minimal Covers in Boldface) :
2-fold covers : {2,3,2,28}*672, {2,6,2,14}*672
3-fold covers : {2,9,2,14}*1008, {2,3,6,14}*1008, {6,3,2,14}*1008, {2,3,2,42}*1008
4-fold covers : {2,3,2,56}*1344, {2,12,2,14}*1344, {2,6,2,28}*1344, {2,6,4,14}*1344, {4,6,2,14}*1344a, {2,3,4,14}*1344, {4,3,2,14}*1344
5-fold covers : {2,15,2,14}*1680, {2,3,2,70}*1680
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (4,5);;
s2 := (3,4);;
s3 := ( 8, 9)(10,11)(12,13)(14,15)(16,17)(18,19);;
s4 := ( 6,10)( 7, 8)( 9,14)(11,12)(13,18)(15,16)(17,19);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s1*s2*s1*s2*s1*s2, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(19)!(1,2);
s1 := Sym(19)!(4,5);
s2 := Sym(19)!(3,4);
s3 := Sym(19)!( 8, 9)(10,11)(12,13)(14,15)(16,17)(18,19);
s4 := Sym(19)!( 6,10)( 7, 8)( 9,14)(11,12)(13,18)(15,16)(17,19);
poly := sub<Sym(19)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s1*s2*s1*s2*s1*s2, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
to this polytope