Questions?
See the FAQ
or other info.

Groups of Size 336

This page is part of the Atlas of Small Regular Polytopes
10 groups yielding 45 nondegenerate and 55 degenerate polytopes.

Rank 2 Polytopes : 1 nondegenerate and 0 degenerate.
Rank 3 Polytopes : 44 nondegenerate and 2 degenerate.
Rank 4 Polytopes : 0 nondegenerate and 19 degenerate.
Rank 5 Polytopes : 0 nondegenerate and 22 degenerate.
Rank 6 Polytopes : 0 nondegenerate and 12 degenerate.

Groups :
  1. SmallGroup(336,93) 1 nondegenerate polytope and 0 degenerate polytopes.
  2. SmallGroup(336,148) 2 nondegenerate polytopes and 2 degenerate polytopes.
  3. SmallGroup(336,149) 2 nondegenerate polytopes and 2 degenerate polytopes.
  4. SmallGroup(336,196) 0 nondegenerate polytopes and 2 degenerate polytopes.
  5. SmallGroup(336,198) 2 nondegenerate polytopes and 2 degenerate polytopes.
  6. SmallGroup(336,208) 28 nondegenerate polytopes and 0 degenerate polytopes.
  7. SmallGroup(336,212) 4 nondegenerate polytopes and 6 degenerate polytopes.
  8. SmallGroup(336,215) 6 nondegenerate polytopes and 4 degenerate polytopes.
  9. SmallGroup(336,219) 0 nondegenerate polytopes and 30 degenerate polytopes.
  10. SmallGroup(336,227) 0 nondegenerate polytopes and 7 degenerate polytopes.