include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,4,12}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,4,12}*384c
if this polytope has a name.
Group : SmallGroup(384,20051)
Rank : 4
Schlafli Type : {2,4,12}
Number of vertices, edges, etc : 2, 8, 48, 24
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,4,12,2} of size 768
Vertex Figure Of :
{2,2,4,12} of size 768
{3,2,4,12} of size 1152
{5,2,4,12} of size 1920
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,4,6}*192
4-fold quotients : {2,4,3}*96, {2,4,6}*96b, {2,4,6}*96c
8-fold quotients : {2,4,3}*48, {2,2,6}*48
16-fold quotients : {2,2,3}*24
24-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
2-fold covers : {2,4,12}*768d, {4,4,12}*768f, {2,8,12}*768g, {2,8,12}*768h, {2,4,24}*768e, {2,4,24}*768f
3-fold covers : {2,4,36}*1152c, {2,12,12}*1152i, {6,4,12}*1152d, {2,12,12}*1152k
5-fold covers : {10,4,12}*1920c, {2,20,12}*1920c, {2,4,60}*1920c
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 7, 8)( 9,10)(11,12);;
s2 := ( 3, 9)( 4,10)( 5,13)( 6,14)( 7,11)( 8,12);;
s3 := ( 3, 5)( 4, 6)( 9,12)(10,11)(13,14);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s1*s2*s1*s2*s1*s2*s1*s2, s3*s1*s2*s3*s2*s3*s2*s3*s1*s2*s3*s2*s3*s2,
s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(14)!(1,2);
s1 := Sym(14)!( 7, 8)( 9,10)(11,12);
s2 := Sym(14)!( 3, 9)( 4,10)( 5,13)( 6,14)( 7,11)( 8,12);
s3 := Sym(14)!( 3, 5)( 4, 6)( 9,12)(10,11)(13,14);
poly := sub<Sym(14)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s1*s2*s1*s2*s1*s2*s1*s2,
s3*s1*s2*s3*s2*s3*s2*s3*s1*s2*s3*s2*s3*s2,
s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2 >;
to this polytope