include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,5,2,5,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,5,2,5,2}*400
if this polytope has a name.
Group : SmallGroup(400,218)
Rank : 6
Schlafli Type : {2,5,2,5,2}
Number of vertices, edges, etc : 2, 5, 5, 5, 5, 2
Order of s0s1s2s3s4s5 : 10
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Self-Dual
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,5,2,5,2,2} of size 800
{2,5,2,5,2,3} of size 1200
{2,5,2,5,2,4} of size 1600
{2,5,2,5,2,5} of size 2000
Vertex Figure Of :
{2,2,5,2,5,2} of size 800
{3,2,5,2,5,2} of size 1200
{4,2,5,2,5,2} of size 1600
{5,2,5,2,5,2} of size 2000
Quotients (Maximal Quotients in Boldface) :
No Regular Quotients.
Covers (Minimal Covers in Boldface) :
2-fold covers : {2,5,2,10,2}*800, {2,10,2,5,2}*800
3-fold covers : {2,5,2,15,2}*1200, {2,15,2,5,2}*1200
4-fold covers : {2,5,2,20,2}*1600, {2,20,2,5,2}*1600, {2,5,2,10,4}*1600, {4,10,2,5,2}*1600, {2,10,2,10,2}*1600
5-fold covers : {2,5,2,25,2}*2000, {2,25,2,5,2}*2000, {2,5,10,5,2}*2000, {2,5,2,5,10}*2000, {10,5,2,5,2}*2000
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (4,5)(6,7);;
s2 := (3,4)(5,6);;
s3 := ( 9,10)(11,12);;
s4 := ( 8, 9)(10,11);;
s5 := (13,14);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s4*s5*s4*s5, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(14)!(1,2);
s1 := Sym(14)!(4,5)(6,7);
s2 := Sym(14)!(3,4)(5,6);
s3 := Sym(14)!( 9,10)(11,12);
s4 := Sym(14)!( 8, 9)(10,11);
s5 := Sym(14)!(13,14);
poly := sub<Sym(14)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5,
s3*s5*s3*s5, s4*s5*s4*s5, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
to this polytope