include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {200}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {200}*400
Also Known As : 200-gon, {200}. if this polytope has another name.
Group : SmallGroup(400,8)
Rank : 2
Schlafli Type : {200}
Number of vertices, edges, etc : 200, 200
Order of s0s1 : 200
Special Properties :
Universal
Spherical
Locally Spherical
Orientable
Self-Dual
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{200,2} of size 800
{200,4} of size 1600
{200,4} of size 1600
Vertex Figure Of :
{2,200} of size 800
{4,200} of size 1600
{4,200} of size 1600
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {100}*200
4-fold quotients : {50}*100
5-fold quotients : {40}*80
8-fold quotients : {25}*50
10-fold quotients : {20}*40
20-fold quotients : {10}*20
25-fold quotients : {8}*16
40-fold quotients : {5}*10
50-fold quotients : {4}*8
100-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
2-fold covers : {400}*800
3-fold covers : {600}*1200
4-fold covers : {800}*1600
5-fold covers : {1000}*2000
Permutation Representation (GAP) :
s0 := ( 2, 5)( 3, 4)( 6, 22)( 7, 21)( 8, 25)( 9, 24)( 10, 23)( 11, 17)
( 12, 16)( 13, 20)( 14, 19)( 15, 18)( 27, 30)( 28, 29)( 31, 47)( 32, 46)
( 33, 50)( 34, 49)( 35, 48)( 36, 42)( 37, 41)( 38, 45)( 39, 44)( 40, 43)
( 51, 76)( 52, 80)( 53, 79)( 54, 78)( 55, 77)( 56, 97)( 57, 96)( 58,100)
( 59, 99)( 60, 98)( 61, 92)( 62, 91)( 63, 95)( 64, 94)( 65, 93)( 66, 87)
( 67, 86)( 68, 90)( 69, 89)( 70, 88)( 71, 82)( 72, 81)( 73, 85)( 74, 84)
( 75, 83)(101,151)(102,155)(103,154)(104,153)(105,152)(106,172)(107,171)
(108,175)(109,174)(110,173)(111,167)(112,166)(113,170)(114,169)(115,168)
(116,162)(117,161)(118,165)(119,164)(120,163)(121,157)(122,156)(123,160)
(124,159)(125,158)(126,176)(127,180)(128,179)(129,178)(130,177)(131,197)
(132,196)(133,200)(134,199)(135,198)(136,192)(137,191)(138,195)(139,194)
(140,193)(141,187)(142,186)(143,190)(144,189)(145,188)(146,182)(147,181)
(148,185)(149,184)(150,183);;
s1 := ( 1,106)( 2,110)( 3,109)( 4,108)( 5,107)( 6,101)( 7,105)( 8,104)
( 9,103)( 10,102)( 11,122)( 12,121)( 13,125)( 14,124)( 15,123)( 16,117)
( 17,116)( 18,120)( 19,119)( 20,118)( 21,112)( 22,111)( 23,115)( 24,114)
( 25,113)( 26,131)( 27,135)( 28,134)( 29,133)( 30,132)( 31,126)( 32,130)
( 33,129)( 34,128)( 35,127)( 36,147)( 37,146)( 38,150)( 39,149)( 40,148)
( 41,142)( 42,141)( 43,145)( 44,144)( 45,143)( 46,137)( 47,136)( 48,140)
( 49,139)( 50,138)( 51,181)( 52,185)( 53,184)( 54,183)( 55,182)( 56,176)
( 57,180)( 58,179)( 59,178)( 60,177)( 61,197)( 62,196)( 63,200)( 64,199)
( 65,198)( 66,192)( 67,191)( 68,195)( 69,194)( 70,193)( 71,187)( 72,186)
( 73,190)( 74,189)( 75,188)( 76,156)( 77,160)( 78,159)( 79,158)( 80,157)
( 81,151)( 82,155)( 83,154)( 84,153)( 85,152)( 86,172)( 87,171)( 88,175)
( 89,174)( 90,173)( 91,167)( 92,166)( 93,170)( 94,169)( 95,168)( 96,162)
( 97,161)( 98,165)( 99,164)(100,163);;
poly := Group([s0,s1]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;; s1 := F.2;;
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(200)!( 2, 5)( 3, 4)( 6, 22)( 7, 21)( 8, 25)( 9, 24)( 10, 23)
( 11, 17)( 12, 16)( 13, 20)( 14, 19)( 15, 18)( 27, 30)( 28, 29)( 31, 47)
( 32, 46)( 33, 50)( 34, 49)( 35, 48)( 36, 42)( 37, 41)( 38, 45)( 39, 44)
( 40, 43)( 51, 76)( 52, 80)( 53, 79)( 54, 78)( 55, 77)( 56, 97)( 57, 96)
( 58,100)( 59, 99)( 60, 98)( 61, 92)( 62, 91)( 63, 95)( 64, 94)( 65, 93)
( 66, 87)( 67, 86)( 68, 90)( 69, 89)( 70, 88)( 71, 82)( 72, 81)( 73, 85)
( 74, 84)( 75, 83)(101,151)(102,155)(103,154)(104,153)(105,152)(106,172)
(107,171)(108,175)(109,174)(110,173)(111,167)(112,166)(113,170)(114,169)
(115,168)(116,162)(117,161)(118,165)(119,164)(120,163)(121,157)(122,156)
(123,160)(124,159)(125,158)(126,176)(127,180)(128,179)(129,178)(130,177)
(131,197)(132,196)(133,200)(134,199)(135,198)(136,192)(137,191)(138,195)
(139,194)(140,193)(141,187)(142,186)(143,190)(144,189)(145,188)(146,182)
(147,181)(148,185)(149,184)(150,183);
s1 := Sym(200)!( 1,106)( 2,110)( 3,109)( 4,108)( 5,107)( 6,101)( 7,105)
( 8,104)( 9,103)( 10,102)( 11,122)( 12,121)( 13,125)( 14,124)( 15,123)
( 16,117)( 17,116)( 18,120)( 19,119)( 20,118)( 21,112)( 22,111)( 23,115)
( 24,114)( 25,113)( 26,131)( 27,135)( 28,134)( 29,133)( 30,132)( 31,126)
( 32,130)( 33,129)( 34,128)( 35,127)( 36,147)( 37,146)( 38,150)( 39,149)
( 40,148)( 41,142)( 42,141)( 43,145)( 44,144)( 45,143)( 46,137)( 47,136)
( 48,140)( 49,139)( 50,138)( 51,181)( 52,185)( 53,184)( 54,183)( 55,182)
( 56,176)( 57,180)( 58,179)( 59,178)( 60,177)( 61,197)( 62,196)( 63,200)
( 64,199)( 65,198)( 66,192)( 67,191)( 68,195)( 69,194)( 70,193)( 71,187)
( 72,186)( 73,190)( 74,189)( 75,188)( 76,156)( 77,160)( 78,159)( 79,158)
( 80,157)( 81,151)( 82,155)( 83,154)( 84,153)( 85,152)( 86,172)( 87,171)
( 88,175)( 89,174)( 90,173)( 91,167)( 92,166)( 93,170)( 94,169)( 95,168)
( 96,162)( 97,161)( 98,165)( 99,164)(100,163);
poly := sub<Sym(200)|s0,s1>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope