Polytope of Type {2,6,6,3}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,6,6,3}*432a
if this polytope has a name.
Group : SmallGroup(432,545)
Rank : 5
Schlafli Type : {2,6,6,3}
Number of vertices, edges, etc : 2, 6, 18, 9, 3
Order of s0s1s2s3s4 : 6
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {2,6,6,3,2} of size 864
   {2,6,6,3,4} of size 1728
Vertex Figure Of :
   {2,2,6,6,3} of size 864
   {3,2,6,6,3} of size 1296
   {4,2,6,6,3} of size 1728
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,3,6,3}*216
   3-fold quotients : {2,6,2,3}*144
   6-fold quotients : {2,3,2,3}*72
   9-fold quotients : {2,2,2,3}*48
Covers (Minimal Covers in Boldface) :
   2-fold covers : {2,12,6,3}*864a, {4,6,6,3}*864a, {2,6,6,6}*864a
   3-fold covers : {2,6,6,9}*1296a, {2,18,6,3}*1296a, {2,6,6,3}*1296a, {2,6,6,3}*1296b, {6,6,6,3}*1296a, {6,6,6,3}*1296b, {2,6,6,3}*1296e
   4-fold covers : {4,12,6,3}*1728a, {2,24,6,3}*1728a, {8,6,6,3}*1728a, {2,6,6,12}*1728a, {2,12,6,6}*1728a, {4,6,6,6}*1728a, {2,6,12,6}*1728a, {4,6,6,3}*1728a, {2,6,12,3}*1728a
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 5)( 7, 8)(10,11)(13,14)(16,17)(19,20);;
s2 := ( 3,12)( 4,14)( 5,13)( 6,16)( 7,15)( 8,17)( 9,20)(10,19)(11,18);;
s3 := ( 3, 6)( 4, 8)( 5, 7)(10,11)(12,15)(13,17)(14,16)(19,20);;
s4 := ( 4, 5)( 6, 9)( 7,11)( 8,10)(13,14)(15,18)(16,20)(17,19);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4*s3*s4, s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, 
s4*s2*s3*s2*s3*s4*s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(20)!(1,2);
s1 := Sym(20)!( 4, 5)( 7, 8)(10,11)(13,14)(16,17)(19,20);
s2 := Sym(20)!( 3,12)( 4,14)( 5,13)( 6,16)( 7,15)( 8,17)( 9,20)(10,19)(11,18);
s3 := Sym(20)!( 3, 6)( 4, 8)( 5, 7)(10,11)(12,15)(13,17)(14,16)(19,20);
s4 := Sym(20)!( 4, 5)( 6, 9)( 7,11)( 8,10)(13,14)(15,18)(16,20)(17,19);
poly := sub<Sym(20)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4*s3*s4, 
s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, s4*s2*s3*s2*s3*s4*s2*s3*s2*s3, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope