Polytope of Type {2,6,6,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,6,6,6}*864a
if this polytope has a name.
Group : SmallGroup(864,4033)
Rank : 5
Schlafli Type : {2,6,6,6}
Number of vertices, edges, etc : 2, 6, 18, 18, 6
Order of s0s1s2s3s4 : 6
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {2,6,6,6,2} of size 1728
Vertex Figure Of :
   {2,2,6,6,6} of size 1728
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,3,6,6}*432a, {2,6,6,3}*432a
   3-fold quotients : {2,6,2,6}*288
   4-fold quotients : {2,3,6,3}*216
   6-fold quotients : {2,3,2,6}*144, {2,6,2,3}*144
   9-fold quotients : {2,2,2,6}*96, {2,6,2,2}*96
   12-fold quotients : {2,3,2,3}*72
   18-fold quotients : {2,2,2,3}*48, {2,3,2,2}*48
   27-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   2-fold covers : {2,6,6,12}*1728a, {2,12,6,6}*1728a, {4,6,6,6}*1728a, {2,6,12,6}*1728a
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  4,  5)(  6,  9)(  7, 11)(  8, 10)( 13, 14)( 15, 18)( 16, 20)( 17, 19)
( 22, 23)( 24, 27)( 25, 29)( 26, 28)( 31, 32)( 33, 36)( 34, 38)( 35, 37)
( 40, 41)( 42, 45)( 43, 47)( 44, 46)( 49, 50)( 51, 54)( 52, 56)( 53, 55)
( 58, 59)( 60, 63)( 61, 65)( 62, 64)( 67, 68)( 69, 72)( 70, 74)( 71, 73)
( 76, 77)( 78, 81)( 79, 83)( 80, 82)( 85, 86)( 87, 90)( 88, 92)( 89, 91)
( 94, 95)( 96, 99)( 97,101)( 98,100)(103,104)(105,108)(106,110)(107,109);;
s2 := (  3, 60)(  4, 62)(  5, 61)(  6, 57)(  7, 59)(  8, 58)(  9, 63)( 10, 65)
( 11, 64)( 12, 69)( 13, 71)( 14, 70)( 15, 66)( 16, 68)( 17, 67)( 18, 72)
( 19, 74)( 20, 73)( 21, 78)( 22, 80)( 23, 79)( 24, 75)( 25, 77)( 26, 76)
( 27, 81)( 28, 83)( 29, 82)( 30, 87)( 31, 89)( 32, 88)( 33, 84)( 34, 86)
( 35, 85)( 36, 90)( 37, 92)( 38, 91)( 39, 96)( 40, 98)( 41, 97)( 42, 93)
( 43, 95)( 44, 94)( 45, 99)( 46,101)( 47,100)( 48,105)( 49,107)( 50,106)
( 51,102)( 52,104)( 53,103)( 54,108)( 55,110)( 56,109);;
s3 := (  3, 12)(  4, 14)(  5, 13)(  6, 16)(  7, 15)(  8, 17)(  9, 20)( 10, 19)
( 11, 18)( 22, 23)( 24, 25)( 27, 29)( 30, 39)( 31, 41)( 32, 40)( 33, 43)
( 34, 42)( 35, 44)( 36, 47)( 37, 46)( 38, 45)( 49, 50)( 51, 52)( 54, 56)
( 57, 66)( 58, 68)( 59, 67)( 60, 70)( 61, 69)( 62, 71)( 63, 74)( 64, 73)
( 65, 72)( 76, 77)( 78, 79)( 81, 83)( 84, 93)( 85, 95)( 86, 94)( 87, 97)
( 88, 96)( 89, 98)( 90,101)( 91,100)( 92, 99)(103,104)(105,106)(108,110);;
s4 := (  3, 30)(  4, 32)(  5, 31)(  6, 33)(  7, 35)(  8, 34)(  9, 36)( 10, 38)
( 11, 37)( 12, 48)( 13, 50)( 14, 49)( 15, 51)( 16, 53)( 17, 52)( 18, 54)
( 19, 56)( 20, 55)( 21, 39)( 22, 41)( 23, 40)( 24, 42)( 25, 44)( 26, 43)
( 27, 45)( 28, 47)( 29, 46)( 57, 84)( 58, 86)( 59, 85)( 60, 87)( 61, 89)
( 62, 88)( 63, 90)( 64, 92)( 65, 91)( 66,102)( 67,104)( 68,103)( 69,105)
( 70,107)( 71,106)( 72,108)( 73,110)( 74,109)( 75, 93)( 76, 95)( 77, 94)
( 78, 96)( 79, 98)( 80, 97)( 81, 99)( 82,101)( 83,100);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, s4*s2*s3*s2*s3*s4*s2*s3*s2*s3, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(110)!(1,2);
s1 := Sym(110)!(  4,  5)(  6,  9)(  7, 11)(  8, 10)( 13, 14)( 15, 18)( 16, 20)
( 17, 19)( 22, 23)( 24, 27)( 25, 29)( 26, 28)( 31, 32)( 33, 36)( 34, 38)
( 35, 37)( 40, 41)( 42, 45)( 43, 47)( 44, 46)( 49, 50)( 51, 54)( 52, 56)
( 53, 55)( 58, 59)( 60, 63)( 61, 65)( 62, 64)( 67, 68)( 69, 72)( 70, 74)
( 71, 73)( 76, 77)( 78, 81)( 79, 83)( 80, 82)( 85, 86)( 87, 90)( 88, 92)
( 89, 91)( 94, 95)( 96, 99)( 97,101)( 98,100)(103,104)(105,108)(106,110)
(107,109);
s2 := Sym(110)!(  3, 60)(  4, 62)(  5, 61)(  6, 57)(  7, 59)(  8, 58)(  9, 63)
( 10, 65)( 11, 64)( 12, 69)( 13, 71)( 14, 70)( 15, 66)( 16, 68)( 17, 67)
( 18, 72)( 19, 74)( 20, 73)( 21, 78)( 22, 80)( 23, 79)( 24, 75)( 25, 77)
( 26, 76)( 27, 81)( 28, 83)( 29, 82)( 30, 87)( 31, 89)( 32, 88)( 33, 84)
( 34, 86)( 35, 85)( 36, 90)( 37, 92)( 38, 91)( 39, 96)( 40, 98)( 41, 97)
( 42, 93)( 43, 95)( 44, 94)( 45, 99)( 46,101)( 47,100)( 48,105)( 49,107)
( 50,106)( 51,102)( 52,104)( 53,103)( 54,108)( 55,110)( 56,109);
s3 := Sym(110)!(  3, 12)(  4, 14)(  5, 13)(  6, 16)(  7, 15)(  8, 17)(  9, 20)
( 10, 19)( 11, 18)( 22, 23)( 24, 25)( 27, 29)( 30, 39)( 31, 41)( 32, 40)
( 33, 43)( 34, 42)( 35, 44)( 36, 47)( 37, 46)( 38, 45)( 49, 50)( 51, 52)
( 54, 56)( 57, 66)( 58, 68)( 59, 67)( 60, 70)( 61, 69)( 62, 71)( 63, 74)
( 64, 73)( 65, 72)( 76, 77)( 78, 79)( 81, 83)( 84, 93)( 85, 95)( 86, 94)
( 87, 97)( 88, 96)( 89, 98)( 90,101)( 91,100)( 92, 99)(103,104)(105,106)
(108,110);
s4 := Sym(110)!(  3, 30)(  4, 32)(  5, 31)(  6, 33)(  7, 35)(  8, 34)(  9, 36)
( 10, 38)( 11, 37)( 12, 48)( 13, 50)( 14, 49)( 15, 51)( 16, 53)( 17, 52)
( 18, 54)( 19, 56)( 20, 55)( 21, 39)( 22, 41)( 23, 40)( 24, 42)( 25, 44)
( 26, 43)( 27, 45)( 28, 47)( 29, 46)( 57, 84)( 58, 86)( 59, 85)( 60, 87)
( 61, 89)( 62, 88)( 63, 90)( 64, 92)( 65, 91)( 66,102)( 67,104)( 68,103)
( 69,105)( 70,107)( 71,106)( 72,108)( 73,110)( 74,109)( 75, 93)( 76, 95)
( 77, 94)( 78, 96)( 79, 98)( 80, 97)( 81, 99)( 82,101)( 83,100);
poly := sub<Sym(110)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, 
s4*s2*s3*s2*s3*s4*s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >; 
 

to this polytope